28 апреля 2023

Порядок затяжки паука газ 53 рисунок, сосет воздух ВАЗ 2114

Оглавление

Содержание

При установке зажигания с холостой искрой и высокой энергией добиться от мотора нормальной работы не удалось. Он стрелял, бабахал. Вообщем смесь воспламенялась в том цилиндре, где этого быть не должно. При изучении этого вопроса наткнулся на то, что в фазах 8-ми цилиндров наблюдаются явные неравномерности и аномалии.
Но об этом позже…
Сначала немного истории.
В середине 50-ых годов проектировался полностью с нуля двигатель V8! Предназначался он для автомобиля ГАЗ 13 (Чайка). Двигатель имел достаточно прогрессивную по тем годам конструкцию и технологию изготовления, а именно блок цилиндров, головок, впускной коллектор, и поршни были выполнены из алюминиевого сплава ! Отливка осуществлялась под давлением. Редчайшее по тем временам техническое решение! С этим двигателем страна шла впереди планеты всей. Кстати сказать и для страны этот двигатель стал ПЕРВЫМ ДВИГАТЕЛЕМ с алюминиевым блоком.
(У пиндосов алюминиевые моторы стали появляться в начале шестидесятых годов, но особого распространения в то время они не получили). Ох уж этот патриотизм… Отвлекся. Дак о чем я.
Если вкратце, то это был классический V8 с распредвалом в развале блока, штанговым приводом клапанов и 2-я клапанами на цилиндр. Диаметр цилиндра составлял 100мм, а ход поршня – 88мм. Благодаря этому мотор развивал момент в 410Н/м и мощность 195л.с. Несмотря на степень сжатия 8,5 единиц, двигатель питался бензином А-76, а всё потому-что бензин в те далёкие времена был этилированный, и даже при таком сжатии 76-й сгорал без детонации. Кто то может еще помнит надписи на бензобаках «ЭТИЛ-ЯД!» 🙂
Вообщем порядок работы двигателя был 1-5-4-2-6-3-7-8.
Ну так уж решили конструктора и думаю обосновано. Не единственно возможное решение конечно, но порядок работы запоминаем. Порядку работы двигателя наверное надо посвятить еще одну запись в БЖ. Таких моторов было выпущено ровно 2000 штук.
Чуть позже появляется на свет дефорсированный вариант этого же двигателя под обозначением ЗМЗ-41 устанавливался он на БРДМ-2, а созданные на его базе версии с уменьшенным рабочим объёмом до сих пор используются на грузовиках ГАЗ (ЗМЗ-53, −511, −523) и автобусах ПАЗ (ЗМЗ-523). Вот. Но порядок работы цилиндров у них у всех сохранился.
Ну вот вкратце как то так. А еще были догонялки. Про них можно почитать здесь: www.drive2.ru/communities…5/blog/288230376151778439

А теперь вернемся собственно к порядку работы двигателя.
Если за угол в 0* принять ВМТ 1го цилиндра в конце такта сжатия то там отчетливо видно следующее:

На 90* происходит одновременно выпуск 7-го и 8-го цилиндров
На 270* происходит одновременно впуск 7-го и 8-го цилиндров через левый диффузор карбюратора
На 450* происходит одновременно выпуск 2-го и 4-го цилиндров
На 630* происходит одновременно впуск 2-го и 4-го цилиндров через правый диффузор карбюратора
И если с выпуском как то более менее решаемо и не так значительно, то с впуском дела обстоят совсем плохо!
Вот и думаю, да как же так! Как конструкторы — разработчики могли допустить такую грубейшую ошибку в работе двигателя. Как можно сосать одновременно через одну дырку карбюратора двум горшкам. Я был в недоумении и шоке одновременно. Начал изучать этот вопрос. А оказалось вот что!
Конструировался мотор с другим впускным коллектором. Назывался он двухуровневым. И там каналы проходя друг под другом, хитрым образом переплетаясь не создавали такой непонятной картины.
Но в 80-ых годах нашелся умник (коленвал ему в зад!), который решил упростить отливку паука. Вот так и появилось на свет это убожество.
Надо что-то делать с этим неправильным пауком!
Предлагаю рассмотреть три варианта изготовления пауков.

Удалить перегородку под карбюратором и объединить тем самым все каналы и диффузоры карбюратора в кучу. Этот паук будет самый простой в изготовлении, иметь одинаковые длины впускных каналов, но трудно сказать, как он себя поведет. Мне пока непонятно. Но думаю — это самый худший вариант.
У этого паука будет равномерно (по очереди) распределен такт впуска по диффузорам карбюратора, но разная длинна впускных каналов. Паук имеет два уровня впускных каналов в горизонтальной плоскости. Сложнее в изготовлении предыдущего. На мой взгляд этот вариант уже лучше.
У этого паука будет равномерно распределен такт впуска по диффузорам, одинаковая длинна впускных каналов. Паук имеет три уровня впускных каналов в горизонтальной плоскости.
Самый сложный в изготовлении, но самый лучший по всем характеристикам.
Прошу извинить за такие калякули.
Жду Ваших мнений…

Как видно из названия, речь пойдет о поиске неучтенного воздуха, который в обход ДМРВ попадает во впуск, тем самым нарушая нормальную работу двигателя. Опишу несколько способов, которые испробовал. Явные симптомы наличия подсосов воздуха:
1) неустойчивая работа двигателя на ХХ;
2) ошибки типа бедная смесь;
3) потеря динамики;
4) снижение массового расхода воздуха;
4) коэффициент коррекции времени впрыска завышен и больше 1,000;
5) уменьшение шагов РХХ;
Значения типовых параметров систем впрыска Январь//BOSCH есть в интернете, я отталкивался от них. ЭБУ у меня Январь 7.2.
Нормальные значения
Массовый расход воздуха кг/час на хх 8-13.
Угол опережения зажигания грд. п.к.в. 7-17
Длительность импульса впрыска мсек 3,5-4,3
Текущее положение РХХ шаг 40+/-15
Коэффициэнт коррекции времени впрыска по сигналу ДК 1 +/-0,2

Что было у меня по факту:
Массовый расход воздуха кг/час на хх 7-9
Угол опережения зажигания грд. п.к.в. 0-7
Длительность импульса впрыска мсек 4-4,6
Текущее положение РХХ шаг 15-22
Коэффициэнт коррекции времени впрыска по сигналу ДК 1,2-1,4
Чек: бедная смесь

Начал с замера давления в топливной рампе, чтобы частично исключить топливную систему.
Рампа у меня нового образца без выносного регулятора давления топлива. Давление норма 3,8.
Открутил на торце рампы колпачек, стравил давление, выкрутил ниппель. Далее с китайского компрессора для накачки шин скрутил манометр, одел на манометр резиновый шланг (в идеале надо бензостойкий) обжал хомутом. Другой конец одел на рампу и обжал хомутом. Включил зажигание, завел — давление 3,6((( Расстроился, думал, что помирает насос. Вспомнил, что в гараже валяется старый советский ножной, механический, насос, скрутил манометр с него. Советский манометр показал 3,8, при перегазовках примерно до 4. Насос топливной системы в норме.

Для нормальной работы бензиновому двигателю жизненно необходимо точное соотношение топлива к кислороду. Подсос воздуха во впускном коллекторе приводит к увеличению доли окислителя, что, естественно, регистрируется ЭБУ двигателя (Engine Control Unit). Рассмотрим основные причины и симптомы неисправности, а также как найти негерметичность во впускном тракте с помощью дымогенератора.

Симптомы

  • Нестабильная работа двигателя на холостых оборотах. На холостом ходу механическая дроссельная заслонка закрыта, а воздух во впускной коллектор идет через байпасный канал ДЗ. В таком режим разряжение за дроссельной заслонкой максимальное, поэтому симптомы подсоса воздуха проявляются ярче всего. Открывая дроссельную заслонку, мы увеличиваем проходное сечение для прохождения потока воздуха, поэтому негативное влияние подсоса на работу двигателя уменьшается.
  • Повышенные холостые обороты.
  • Нестабильная работа двигателя после резкого сброса газа (глохнет при торможении).
  • На приборной панели загорается Check Engine по причине ошибки P0171 – бедная смесь. Считать коды ошибки можно через диагностический разъем мультимарочным сканером с подходящим программным обеспечением либо специализированным диагностическим прибором. Если после удаления ошибка снова появляется на холостых оборотах, велика вероятность, что причина именно в подсосе воздуха, а не поломке ДМРВ, кислородного датчика.

Следует учитывать, что по отдельности каждый из симптомов еще не свидетельствует о подсосе неучтенного воздуха и может быть вызван неисправностями системы питания, ДМРВ, РХХ, дроссельного узла или лямбда-зонда.

Влияние на работу двигателя

Причина симптомов подсоса воздуха кроется в неучтенном кислороде, поступающем в цилиндры. Впору вспомнить назначение и принцип работы ДМРВ. Датчик установлен за воздушным фильтром. Следовательно, ЭБУ может посчитать лишь прошедший через нагревательный элемент поток. О подсосе говорят в том случае, когда во впускном тракте за ДМРВ имеется негерметичность, через которую во впускной коллектор засасывается неучтенный воздух. Поскольку ЭБУ рассчитывает порцию топлива, опираясь на показания ДМРВ, смесь на холостых оборотах получается обедненной (избыток окислителя).

В системах с МАР сенсором (ДАД) ЭБУ опирается на давление во впускном коллекторе. Но для нормальной работы проходное сечение байпасного канала, которое контролируется вылетом штока РХХ, и степень открытия дроссельной заслонки должны соответствовать калибровкам, заложенным в ЭБУ двигателя. Разумеется, подсос неучтенного воздуха вносит неразбериху в работу блока управления, поэтому он всячески пытается синхронизировать работу исполнительных механизмов и показания датчика. Поэтому начинают плавать обороты, и в целом холостой ход нестабилен.

Возможные места негерметичности впускного тракта

  • Все трубки, шланги вакуумной системы. Чаще всего шланги рассыхаются в местах соединения со штуцерами, трескаются на изгибах. Также подсос неучтенного воздуха может возникнуть вследствие невнимательности, когда после ремонта забывают подключить либо путают местами шланги, сдергивают их со штуцеров по неосторожности.
  • Система вакуумного усилителя тормозов. Подсос воздуха может происходить не только через обратный клапан или шланг, но и через порванную мембрану, разгерметизацию корпуса вакуумной камеры. Мы уже рассматривали, как проверить ВУТ.
  • Прокладка впускного коллектора.
  • Уплотнительные резинки форсунок.

  • Уплотнитель РХХ в месте прикручивания к корпусу ДЗ.
  • Ось вращения механической дроссельной заслонки. Возникшая на больших пробегах выработка приводит к появлению люфта. Дроссельные заслонки с электропроводом проблемой подсоса неучтенного воздуха в таких местах не страдают.
  • Трещина во впускном коллекторе. Довольно типичная проблема для авто с пластиковыми коллекторами.
  • Система вентиляции картерных газов. Причиной подсоса становится негерметичность шлангов, трубок, клапана.
  • Негерметичность системы вентиляции бензобака.

Применение диагностического прибора

Сканер позволяет определить дополнительные симптомы, свидетельствующие о том, что причина нестабильных холостых оборотов именно в подсосе воздуха, Прибор позволит в реальном времени наблюдать:

  • показания лямбда-зонда;
  • степень открытия дроссельной заслонки;
  • положение регулятора холостого хода;
  • желаемые и действительные обороты холостого хода;
  • долгосрочные и краткосрочные топливные коррекции.

На видео специалист-диагност поясняет, как именно использовать эти значения для диагностики подсоса воздуха в двигателе.

Локализируем причину

Рассмотрим основные методы определения причины подсоса воздуха без использования дымогенератора.

  • Разбрызгивание очистителя карбюратора вблизи элементов впускного тракта. В состав очистителей входят легко испаряемые и воспламеняемые компоненты. Попадая через место подсоса воздуха в цилиндры, очиститель обогащает топливную смесь. В особо критичных случаях в такие моменты наблюдается кратковременное поднятие оборотов двигателя. Но гораздо достоверней во время теста наблюдать с помощью диагностического прибора за краткосрочной топливной коррекцией. Значения при всасывании очистителя будут подниматься, так как лямбда-зонд зарегистрирует обогащение смеси.
  • Разбрызгивание воды. Цель проверки – услышать характерный звук всасывания воды, что обязательно произойдет в месте подсоса воздуха. Для удобства наберите в бутылку воды, предварительно сделав небольшое отверстие в крышке. Обильно полейте места подключения шлангов вакуумной системы, по возможности место стыка блока цилиндров и впускного коллектора. С особой внимательностью проверьте участок после дроссельной заслонки, так как там разряжение и риск появления подсоса выше всего. Но не стоит целиком заливать двигатель холодной водой, а особенно, выпускной коллектор. Резкий перепад температур может привести к его растрескиванию.

Тест дымогенератором

Смысл проверки заключается в подаче во впускной тракт дыма. В местах подсоса воздуха дым будет выходить, что и позволит локализировать негерметичность. Вы можете купить дымогенератор либо соорудить прибор своими руками. В интернете предостаточно различных вариантов конструкции, один из которых показан на видео ниже.

Как дымогенератором найти место подсоса воздуха?

  1. Заблокируйте впускной патрубок перед воздушным фильтром. Если этого не сделать давление дыма во впускном тракте нарастать будет медленно.
  2. Отсоедините один из доступных шлангов вакуумной системы, вместо него подключите шланг дымогенератора.

С помощью компрессора подайте дым. Когда система полностью заполнится, вам остается наблюдать за местами утечки дыма, которые могут спровоцировать подсос неучтенного воздуха во впускной коллектор.

1200 руб. за фотоотчёт

Платим за фотоотчёты по ремонту авто. Заработок от 10 000 руб/мес. Пишите:

Когда автомобиль при старте с места (резком) начинает на секундочку захлебываться, а в некоторых случаях даже глохнет — это 99% подсос воздуха. Поскольку лишний воздух, попадающий в цилиндры двигателя, вызывает резкое обеднение смеси и, как следствие, трудности воспламенения. Мотор троит и может глохнуть на холостых.

Симптомы подсоса воздуха

Симптомы подсоса воздуха двигателем чаще всего однозначны:

  1. Неуверенный старт по утрам.
  2. Неустойчивый холостой ход – обороты холостого хода постоянно меняются и ниже 1000 об/мин. двигатель может глохнуть. На авто с карбюраторным двигателем, винт качества и количества стает малозначимым для настройки режима ХХ поскольку воздух идет в обход канала ХХ.
  3. Падение мощности — во впускном тракте на системах с MAF (датчик массового расхода воздуха) — низкие обороты холостого хода; на системах с MAP сенсором (датчик абсолютного давления) наоборот — повышенные обороты ХХ, ошибки по лямбде, бедная смесь, пропуски воспламенения.
  4. Увеличение расход топлива — чтобы трогаться и продолжать движение, нужно постоянно держать высокие обороты, при этом дольше находится на пониженной передаче.

Места подсоса воздуха

К основным местам, через которые может происходить подсос, относится:

  • прокладка впускного коллектора;
  • прокладка на дроссельной заслонке;
  • участок патрубка от воздушного фильтра до дроссельного узла;
  • уплотнительные кольца форсунок;
  • вакуумный усилитель тормозов;
  • вакуумные шланги;
  • клапан адсорбера;
  • регулятор холостого хода (если он есть).

Отдельно стоит рассматривать места подсос воздуха на карбюраторных двигателях — там нет электроники, и воздух может сосать лишь на вакуумном усилителе или где-то в карбюратор.

Места подсоса (карбюратор)

  1. У винта качества топливной смеси.
  2. За прокладку под карбюратором – участки с копотью верный признак.
  3. Сквозь не плотное прилегание дроссельной заслонки.
  4. Через оси дросселей.
  5. Нарушения целостности диафрагм демпфера дросселя, экономайзера или пускового.

Подсос воздуха в топливной системе дизеля

В топливной системе дизельного двигателя завоздушивание происходит, как правило, из-за негерметичного стыка трубок топливной системы низкого давления (от бака до фильтра и от фильтра до ТНВД).

Причина подсоса на дизельном авто

Подсос воздуха в негерметичной топливной системе происходит потому, что атмосферное давление выше чем то, которое создается при работе насоса сосущего солярку из бака. Такую разгерметизацию обнаружить по течи практически невозможно.

На современных дизельных двигателях проблема подсоса воздуха в топливную систему встречается гораздо чаще, нежели на дизелях старого образца. Все через изменения конструкции подведения топливных шлангов, поскольку раньше они были латунные, а сейчас делают пластмассовые быстросъемы, которые имеют свой строк эксплуатации.

Пластмасса, в результате вибраций, имеет свойство стираться, а резиновые уплотнительные кольца -изнашиваться. Особенно ярко такая проблема проявляется в зимнее время на автомобилях с пробегом более 150 тыс. км.

Основные поводы для подсоса, зачастую, таковы:

  • старые шланги и ослабшие хомуты;
  • поврежденные топливные трубки;
  • потеря уплотнения на подключении топливного фильтра;
  • нарушена герметичность в обратной магистрали;
  • нарушено уплотнение приводного вала, оси рычага управления подачей топлива или в крышке ТНВД.

В большинстве случаев происходит банальное старение резиновых уплотнений, причем топливная система может завоздушиваться при повреждении любой из ветвей, как прямой, так и обратной.

Признаки подсоса воздуха

Самая часта и распространенная – машина по утрам или после долгого простоя, перестает быстро заводится, приходится долго крутить стартером (при этом идет небольшой дымок из выхлопной — это будет свидетельствовать о поступления топлива в цилиндры). Признаком большого подсоса является не только тяжелый запуск, но и при езде начинает глохнуть, и троить.

Такое поведения автомобиля связано с тем, что ТНВД не успевает пропускать через себя пену только на высоких оборотах, а на холостых не справляется с большим количеством воздуха в топливной камере. Определить же, что проблема в работе дизельного двигателя связана именно с подсосом воздуха, поможет замена штатных трубок на прозрачные.

Как найти подсос в топливной системе дизеля

Тянуть воздух может в соединении, в поврежденной трубке или даже в баке. А найти можно методом исключения, либо подать давление в систему для разряжения.

Самый лучший и надежный способ — найти неплотность методом исключения: к каждому участку топливной системы подключать поступления солярки не из бака, а из канистры. И поочередно проверять — сразу подключить к ТНВД, затем подключится уже перед отстойником и т.д.

Более быстрым и простым вариантом определить место подсоса будет подача давление в бак. Тогда в том месте, где подсасывает воздух, появится либо шипение, либо соединение начнет мокнуть.

Подсос воздуха во впускном коллекторе

Суть подсоса воздуха во впускном тракте заключается в том, что в двигатель вместе с топливом поступает лишний и неучтенный датчиком ДМРВ или ДАД воздух, что и приводит к обедненной топливовоздушной смеси в цилиндрах. А это, в свою очередь, способствует неправильной работе двигателя.

Причина подсоса воздуха

  1. Механическое воздействие.
  2. Перегрев (влияет на эластичность прокладок и герметика).
  3. Чрезмерное злоупотребление средствами чистки карбюраторов (сильно размягчает герметик и прокладки).

Наиболее проблематично найти место подсоса воздуха в районе прокладки между ГБЦ и впускным коллектором.

Как найти подсос воздуха в коллекторе

На бензиновых двигателях неучтённый датчиками воздух попадает во впускной коллектор через неплотности или повреждения воздуховодов, прохудившиеся уплотнения форсунок, а также через шланги вакуумной системы тормозов.

Со стандартными местами подсоса разобрались, теперь также стоит выяснить, как искать подсос воздуха. Для этого существует несколько основных методов поиска.

Простой дымогенератор из сигареты

Масляный дымогенератор своими руками

Самый простой способ проверить есть ли подсос воздуха во впускном тракте после расходомера – открутить воздухоподводящий патрубок вместе с датчиком от корпуса воздушного фильтра и запустить двигатель. Затем прикрыть рукой узел с датчиком и смотреть на реакцию — если все в норме, то мотор должен заглохнуть, сильно сжав патрубок после датчика воздуха. В противном случае этого не произойдет и скорее всего можно будет услышать шипение. Если не удается найти подсос воздуха таким методом, то тогда нужно продолжить поиски уже другими доступными способами.

Зачастую ищут подсос либо пережимом шлангов, либо опрыскиванием вероятных мест горючими смесями, такими как: бензин, карбклинер или ВД-40. Но самым эффективным методом поиска места пропускания неучтенного воздуха, является применение дымогенератора.

Поиск подсоса воздуха

Как правило, проблемы с ХХ как и появление ошибки обедненной смеси, случаются только при сильном подсосе. Незначительный подсос можно определить при наблюдении топливной коррекции на холостых и повышенных оборотах.

Проверка подсоса воздуха, пережимая шланги

Чтобы найти место просачивания лишнего воздуха, запускаем двигатель и даем ему некоторое время поработать, а в это время ставим ухо востро и пытаемся услышать шипение, и если засечь не удалось, то пережимаем шланги, которые идут к впускному коллектору (от регулятора давления топлива, вакуумного усилителя и пр.). Когда после пережимания и отпускания наблюдаются изменения в работе двигателя, значит, неисправность на данном участке.

Также, иногда, применяют метод поиска сжатым воздухом. Для этого нужно на заглушенном двигателе закрыть патрубок от фильтра и через любую трубку качать воздух, предварительно обработав мыльным раствором весь впускной тракт.

Поиск подсоса воздуха методом пролива бензином

Как обнаружить подсос опрыскиванием

Установить место, где идет подсос воздуха в двигатель, эффективно помогает метод опрыскивания мест соединений какой-нибудь горючей смесью при работающем моторе. Это может быть как обычный бензин, так и очиститель. О том, что вы нашли место, где подсасывает, подскажет изменение оборотов двигателя (упадут или увеличатся). Нужно набрать в небольшой шприц горячей смеси и тонкой струйкой брызгать все места, где может быть подсос. Ведь когда бензин или другая горючая жидкость попадает на место нарушения герметичности, то в виде паров сразу же просачивается в камеру сгорания, что и приводит к скачку или падению оборотов.

При поиске подсосов стоит брызгать на:
  1. Резиновый патрубок от расходомера до регулятора холостого хода и от РХХ до крышки клапанов.
  2. Соединения впускного коллектора с ГБЦ (в месте, где стоит прокладка).
  3. Соединение ресивера и патрубка дросселя.
  4. Прокладки форсунок.
  5. Все резиновые шланги в местах соединения хомутами (впускная гофра и т.д.).

Проверка наличия подсоса дымогенератором

Дымогенератор мало у кого валяется в гараже, поэтому таким методом поиска нарушения герметичности в системе пользуются в основном на СТО. Хотя, если в гаражных условиях рассмотренными выше методами подсос не удалось найти, то можно сделать примитивный генератор дыма, хотя и обычный тоже имеет несложную конструкцию. Дым нагнетается в любое отверстие во впускном тракте, а затем начинает просачиваться сквозь прорехи.

Когда автомобиль при старте с места (резком) начинает на секундочку захлебываться, а в некоторых случаях даже глохнет — это 99%!подсос воздуха. Поскольку лишний воздух, попадающий в цилиндры двигателя, вызывает резкое обеднение смеси и, как следствие, трудности воспламенения. Мотор троит и может глохнуть на холостых.

Симптомы подсоса воздуха двигателем чаще всего однозначны:

  1. Неуверенный старт по утрам.
  2. Неустойчивый холостой ход – обороты холостого хода постоянно меняются и ниже 1000 об/мин. двигатель может глохнуть. На авто с карбюраторным двигателем, винт качества и количества стает малозначимым для настройки режима ХХ поскольку воздух идет в обход канала ХХ.
  3. Падение мощности — во впускном тракте на системах с MAF (датчик массового расхода воздуха) — низкие обороты холостого хода; на системах с MAP сенсором (датчик абсолютного давления) наоборот — повышенные обороты ХХ, ошибки по лямбде, бедная смесь, пропуски воспламенения.
  4. Увеличение расход топлива — чтобы трогаться и продолжать движение, нужно постоянно держать высокие обороты, при этом дольше находится на пониженной передаче.

К основным местам, через которые может происходить подсос, относится:

  • прокладка впускного коллектора;
  • прокладка на дроссельной заслонке;
  • участок патрубка от воздушного фильтра до дроссельного узла;
  • уплотнительные кольца форсунок;
  • вакуумный усилитель тормозов;
  • вакуумные шланги;
  • клапан адсорбера;
  • регулятор холостого хода (если он есть).

Отдельно стоит рассматривать места подсос воздуха на карбюраторных двигателях — там нет электроники, и воздух может сосать лишь на вакуумном усилителе или где-то в карбюратор.

  1. У винта качества топливной смеси.
  2. За прокладку под карбюратором – участки с копотью верный признак.
  3. Сквозь не плотное прилегание дроссельной заслонки.
  4. Через оси дросселей.
  5. Нарушения целостности диафрагм демпфера дросселя, экономайзера или пускового.

В топливной системе дизельного двигателя завоздушивание происходит, как правило, из-за негерметичного стыка трубок топливной системы низкого давления (от бака до фильтра и от фильтра до ТНВД).

Подсос воздуха в негерметичной топливной системе происходит потому, что атмосферное давление выше чем то, которое создается при работе насоса сосущего солярку из бака. Такую разгерметизацию обнаружить по течи практически невозможно.

На современных дизельных двигателях проблема подсоса воздуха в топливную систему встречается гораздо чаще, нежели на дизелях старого образца. Все через изменения конструкции подведения топливных шлангов, поскольку раньше они были латунные, а сейчас делают пластмассовые быстросъемы, которые имеют свой строк эксплуатации.

Пластмасса, в результате вибраций, имеет свойство стираться, а резиновые уплотнительные кольца -изнашиваться. Особенно ярко такая проблема проявляется в зимнее время на автомобилях с пробегом более 150 тыс. км.

Это интересно: Диагностический код: ошибка р0172

Основные поводы для подсоса, зачастую, таковы:

  • старые шланги и ослабшие хомуты;
  • поврежденные топливные трубки;
  • потеря уплотнения на подключении топливного фильтра;
  • нарушена герметичность в обратной магистрали;
  • нарушено уплотнение приводного вала, оси рычага управления подачей топлива или в крышке ТНВД.

В большинстве случаев происходит банальное старение резиновых уплотнений, причем топливная система может завоздушиваться при повреждении любой из ветвей, как прямой, так и обратной.

Самая часта и распространенная – машина по утрам или после долгого простоя, перестает быстро заводится, приходится долго крутить стартером (при этом идет небольшой дымок из выхлопной — это будет свидетельствовать о поступления топлива в цилиндры). Признаком большого подсоса является не только тяжелый запуск, но и при езде начинает глохнуть, и троить.

Такое поведения автомобиля связано с тем, что ТНВД не успевает пропускать через себя пену только на высоких оборотах, а на холостых не справляется с большим количеством воздуха в топливной камере. Определить же, что проблема в работе дизельного двигателя связана именно с подсосом воздуха, поможет замена штатных трубок на прозрачные.

Тянуть воздух может в соединении, в поврежденной трубке или даже в баке. А найти можно методом исключения, либо подать давление в систему для разряжения.

Самый лучший и надежный способ — найти неплотность методом исключения: к каждому участку топливной системы подключать поступления солярки не из бака, а из канистры. И поочередно проверять — сразу подключить к ТНВД, затем подключится уже перед отстойником и т.д.

Более быстрым и простым вариантом определить место подсоса будет подача давление в бак. Тогда в том месте, где подсасывает воздух, появится либо шипение, либо соединение начнет мокнуть.

Определяем место подсоса воздуха

Самый эффективный способ определения места подсоса воздуха — визуальный.

Правда, для этого придётся либо найти, либо собрать простейший дымогенератор. Дым, запущенный в систему впуска, моментально покажет место подсоса с высокой точностью. Понятно, что дымогенератор есть даже не каждой СТО, поэтому простейший прибор можно собрать своими руками.

Дымогенератор своими руками

Для этого пригодится продувочный пневматический пистолет, компрессор с ресивером и пачка сигарет для дыма. Пистолет просто подключается к воздушному ресиверу или компрессору, в носик пистолета вставляется сигарета, нагнетается давление порядка 0,5-0,8 атм и дым под давлением поступает во впускной коллектор.

Самодельный дымогенератор

Изъян станет заметен сразу, как только дым найдёт место для выхода.

Другой способ поиска места «подсоса»

Второй способ определения места подсоса более трудоёмкий и длительный. Для этого пригодится легковоспламеняемая жидкость (эфир, бензин с высоким октановым числом, жидкость для быстрого пуска мотора в баллончике). Для проверки и определения места подсоса достаточно запустить двигатель и брызгать жидкостью на сопряжения коллектора.

Иногда подсос явно слышен по характерному свисту или шипению, но такое бывает не во всех случаях. Поэтому нужно методично обрызгивать жидкостью место прилегания впускного коллектора к головке блока и все подозрительные соединения, которые мы перечислили выше. Как только жидкость попадёт на место пробоя, её засосёт во впускной тракт и обороты двигателя резко увеличатся на некоторое время.

Другие способы

Существует ещё несколько методов выявления подсоса. Они заключаются в точном измерении разряжения на участке от дроссельной заслонки до камер сгорания, однако аппаратура, применяемая для реализации этого метода не всегда доступна, да и точность локализации места разгерметизации при помощи этого метода минимальна.

Где может проникать воздух?

Чтобы проверить наличие подсоса в двигателе, нужно понимать, где следует искать. На моторах, оснащенных инжектором, воздух может подсасываться в следующих местах:

  • прокладка на фланце головки цилиндров, куда прилегает впускной коллектор;
  • корпус вакуумного усилителя тормозной системы;
  • шланг отбора вакуума для усилителя;
  • прокладка дросселя;
  • через форсунки со слабыми уплотняющими кольцами;
  • на фланце регулятора холостого хода;
  • сквозь заклинивший клапан бачка – адсорбера.

Изношенные карбюраторы, чей посадочный фланец прогнулся от воздействия высокой температуры, нередко пропускают воздушный поток на стыке с коллектором. Второе «больное» место – дроссельные заслонки обеих камер, которые в результате износа становятся овальными. Подсос происходит через боковые зазоры и вызывает самопроизвольное истечение бензина из главного диффузора, отчего двигатель раскручивается до 2000 об/мин на холостом ходу.

Слабое звено дизеля – топливная магистраль, идущая от бака до насоса высокого давления. Пластиковые трубки и хомуты со временем теряют герметичность и насос, создающий на участке разрежение, подтягивает воздух сквозь невидимые щели. Он проходит по магистрали и через форсунки подается в камеры сгорания. Главная проблема заключается в обнаружении проблемы: прохудившиеся соединения не подтекают, поскольку наружное давление выше внутреннего.

Типичные места подсоса воздуха

Конечно, каждый случай индивидуален, но подсос обычно происходит в таких местах двигателя:

  • прокладка дроссельного узла;
  • соединение впускного коллектора с ГБЦ;
  • вакуумный усилитель тормозов;
  • клапан адсорбера;
  • патрубок, соединяющий дроссельный узел и корпус воздушного фильтра;
  • вакуумные шланги, места их соединений и тройники;
  • уплотнительные резинки топливных форсунок;
  • регулятор холостого хода.

В случае с автомобилями, оснащенными карбюраторными моторами, найти подсос гораздо проще. Там нет большого количества электронных устройств и датчиков, а дополнительный воздух обычно попадает в двигатель через вакуумный усилитель тормозов или один из элементов самого карбюратора.

Подсос воздуха в карбюраторе:

  • прокладка (подсос легко обнаружить по наличию копоти);
  • оси дросселей;
  • винт регулировки качества смеси;
  • негерметичное соединение дроссельной заслонки;
  • повреждения мембраны экономайзера, вакуумной диафрагмы демпфера дроссельной заслонки или диафрагмы пускового устройства.

Признаки подсоса воздуха во впускном коллекторе

Незначительные «излишки» воздуха могут никак не проявлять себя, так как они не способны сильно изменить состав горючей смеси, и выявить их сможет только диагностика двигателя. Но при крупных повреждениях впускного тракта симптомами подсоса воздуха могут стать:

Первый симптом подсоса воздуха во впускном тракте — это неустойчивая работа двигателя на холостом ходу.

  • неустойчивая работа двигателя на холостом ходу, вплоть до его остановки;
  • провалы при ускорении, причём при резком нажатии на педаль «газа» двигатель может опять же заглохнуть, особенно в начале движения авто;
  • возможно повышение рабочей температуры мотора из-за его работы на слишком бедной смеси.

Следует заметить, что неравномерная работа двигателя «сглаживается» на средних и высоких оборотах, можно лишь отметить снижение тяговых качеств двигателя.

Ремонт и обслуживание впускных коллекторов

Современный впускной коллектор — деталь сложная. Случаются с ней и поломки. Рассмотрим типичные.

Нарушения герметичности

Это первое, чем «болеют» системы впуска, впрочем как и многие другие узлы автомобиля. Вибрации, перепады влажности, давления и температур сказываются на резиновых (паранитовых и др.) уплотнениях, которых в сложных системах впуска достаточно много. Возможно дополнительное попадание воздуха в смесь, так называемый «подсос».

Дополнительные порции кислорода обедняют смесь, двигатель теряет тягу, появляются проблемы с холостыми оборотами. Возможны ошибки ЭБУ двигателя. Все эти симптомы говорят о проблемах герметичности впускного тракта.

Подсос воздуха во впускном коллекторе может значительно повлиять на динамические показатели двигателя в целом. После восстановления герметичности работа двигателя нормализуется.

Прокладки впускного и выпускного коллекторов ВАЗ 2106

Загрязнение впускного коллектора

Впускной тракт время от времени необходимо проверять на предмет налета на стенках. Подобная проблема может довольно сильно повлиять на динамику автомобиля. Особенно часто засоряется коллектор на двигателях с системой рециркуляции выхлопных газов. В таких случаях необходимо произвести разборку и чистку устройства специальным составом.

Отложения на стенках элементов впускных коллекторов

Деформации и механические повреждения корпуса

Для производства коллекторов широко используют пластик и алюминий, а эти материалы, как известно, могут деформироваться из-за воздействия высоких температур. Пластик со временем трескается и рассыхается. Алюминиевые коллекторы вследствие вибраций могут лопнуть. Элементы с сильно нарушенной геометрией подлежат замене. Алюминиевые детали можно заварить аргонодуговой сваркой.

Повышенная температура воздуха в впускном коллекторе

Причинами подобной проблемы могут быть:

  • длительная работа на холостом ходу в условиях высокой температуры воздуха (например в пробках);
  • неполадки системы охлаждения и повышение общей температуры двигателя;
  • нарушение вентиляции моторного отсека вследствие засорения радиатора;
  • ошибочное показание датчика температуры во впускном коллекторе;
  • ошибки в прошивке блока управления.

Решением является проверка узлов системы охлаждения и диагностика электронных систем.

Хлопки во впускном коллекторе

Во время воспламенения топлива в цилиндрах двигателя должны соблюдаться условия герметичности (оба клапана должны быть плотно закрыты). При условии воспламенения топлива с открытым или слегка приоткрытым впускным клапаном топливно-воздушная смесь может воспламеняться в самом коллекторе, в результате чего слышны характерные «хлопки». Такие поломки довольно опасны — они могут привести к значительным повреждениям.

Причинами неисправности могут быть:

  • нарушение системы зажигания;
  • неправильно настроенный газораспределительный механизм;
  • нарушения плотности посадки впускных клапанов;
  • проблемы с образованием топливовоздушной смеси.

В подобных случаях необходимо провести комплексную диагностику двигателя для выявления причин хлопков.

Рассмотрим процедуру замены прокладки впускного коллектора на примере двигателя Шевролет Авео 2017 г.

1. До начала работ обесточить бортсеть автомобиля, сняв отрицательную клемму аккумулятора.

2. Демонтировать рычаги стеклоочистителей (необходимо только в случае с конкретным двигателем).

3. Снять пластиковые фиксаторы защелки 1 и винты 2, после чего удалить решетку воздухозаборника 3.

4. Выполнить опорожнение системы охлаждения, выкрутив сливную пробку радиатора 4.

5. Снять воздухопровод воздушного фильтра 5, открутив винты хомутов 6.

6. Снять трубку принудительной вентиляции картера 7.

7. Отсоединить коммуникации дросселя 8-11, снять сам дроссель 12, открутив винты 13.

8. Отсоединить трубку усилителя тормозов 14.

9. Выкрутить винты 16,17 кронштейна коллектора, демонтировать кронштейн 15.

10. Снять направляющую топливной форсунки, отсоединить шланг охлаждения дросселя 19, открутить болты коллектора 18.

11. Отодвинуть коллектор 20 в сторону, аккуратно снять прокладку 21.

12. Очистить и обезжирить посадочные места для новой прокладки, установить ее.

13. Собрать узлы впускной системы в обратном порядке разборки.

Обращайте внимание на порядок и силу утяжки ремонтируемых узлов. Затягивайте резьбовые соединения постепенно в порядке от центра к краю детали, либо крест-накрест.

Не рекомендуется самостоятельно ремонтировать сложные механические узлы и элементы топливной системы.

Правильная работа впускного коллектора гарантирует длительную эксплуатацию двигателя. При минимальных знаниях и наборе необходимых инструментов текущее обслуживание или мелкий ремонт возможно произвести самостоятельно. Со сложными деталями и электроникой лучше обратиться в сервисный центр.

Симптомы подсоса воздуха в коллекторе: проверка и определение

Явные следы треснутого шланга

Любое несанкционированное проникновение лишнего воздуха в систему питания ведёт к обеднению рабочей смеси. Нарушается оптимальный баланс топлива и воздуха, в результате чего двигатель колотит, холостые обороты могут пропасть вовсе, при этом на оборотах выше 2-3 тысяч мотор может работать вполне сносно.

Ошибка P0300

Кроме этого электронный блок управления двигателем может показывать ряд ошибок — Р0171, обеднённая смесь, может появляться ошибка Р300, говорящая о пропусках в воспламенения в камере сгорания. В зависимости от модели двигателя, может возникать ряд других ошибок.

Тем не менее основными симптомами подсоса воздуха во впускном коллекторе считаются:

  • неустойчивые холостые обороты, двигатель трясёт, невозможно отрегулировать холостые;
  • двигатель может глохнуть в переходных режимах работы;
  • провалы при ускорении;
  • высокий расход топлива;
  • сложный запуск при любой температуре воздуха;
  • падение мощности, особенно на оборотах ниже 2-3 тысяч;
  • двигатель троит, не работает в определённых режимах один или несколько цилиндров.

Откуда может подсасывать воздух?

Достаточно одного из этих симптомов, чтобы говорить о подсосе воздуха во впускном тракте. Точно установить место подсоса воздуха бывает довольно непросто, поскольку место крепления и уплотнения впускного коллектора к головке блока цилиндров — далеко не единственный путь для засасывания лишнего кислорода.

В зависимости от модели двигателя, мест подсоса может быть несколько:

  1. Повреждение или прогар прокладки впускного коллектора, это одно из самых распространённых мест неплотности.

    Новые прокладки впускного коллектора

  2. Уплотнители форсунок в инжекторных моторах.
  3. Люфт и неплотности в осях дроссельных заслонок карбюраторных двигателей.
  4. Вакуумный усилитель тормозов.
  5. Патрубки и шланги, которые фиксируются на коллекторе.

    Прохудившийся шланг на коллекторе стал причиной подсоса воздуха

  6. Прокладки дроссельных узлов в инжекторных моторах.
  7. Клапаны адсорбера, заглушки на коллекторе, неплотности в датчиках.
  8. Регуляторы холостого хода сомнительного качества могут быть негерметичными.

    Негерметичный регулятор холостого хода

  9. Втулки.

    Новые втулки

    Бронзовые втулки со следами износа

Как видим, неприятностей можно ждать не только от прокладки коллектора или самого коллектора, вместе с тем есть ряд мер, которые помогут найти место пробоя и быстро устранить неисправность.

Признаки и причины подсоса

Когда в двигателе образуется неплотность, пропускающая дополнительный воздух, наблюдаются следующие симптомы:

  1. Первейший признак – «плавающие» обороты холостого хода. Мотор втягивает лишний воздух, а блок управления, анализирующий состав выхлопных газов с помощью лямбда – зонда, пытается правильно приготовить топливную смесь. Но ДМРВ (или ДАД) не учитывает часть притока, поэтому обороты нестабильны (о признаках неисправности датчика написано здесь).
  2. Доля топлива в горючей смеси уменьшается, отсюда затрудненный пуск силового агрегата «на холодную», когда необходимо обогащение.
  3. Из-за обеднения смеси теряется мощность двигателя – автомобиль тяжелее трогается с места и разгоняется.
  4. Поскольку водитель начинает сильнее нажимать педаль газа и принудительно увеличивать обороты, повышается потребление горючего.

Справка. На карбюраторных двигателях паразитный воздушный поток вызывает скачки оборотов до 2000 об/мин и более, втягивая бензин через главные топливные жиклеры в обход системы холостого хода. Регулировочные винты не действуют.

Существует несколько причин, почему нарушается герметичность соединений и двигатель подсасывает воздух:

  • деформация прилегающих плоскостей (например, всасывающего коллектора к ГБЦ) в результате перегрева;
  • слишком частое использование автомобильной моющей химии, способной размягчить прокладки и герметики;
  • прохудившиеся шланги либо хомуты на патрубках отбора вакуума в двигателе.

На дизелях воздух иногда втягивается топливным насосом через неплотности магистрали, проложенной от бака. В карбюраторах путь воздушному потоку открывается сквозь изношенные оси и выработанные заслонки.

Если в двигатель проникает воздух, который не «видят» расходомер воздуха или датчик абсолютного давления, будет формироваться слишком бедная смесь топлива и воздуха. Эта проблема вызвана подсосом воздуха во впускном тракте.

Основные причины:

  • перегрев мотора (сказывается на состоянии прокладок);
  • внешнее вмешательство;
  • повреждение прокладок в результате неправильного использования карбклинера.

Очень часто трудности могут возникнуть в том случае, если повреждено уплотнение между впускным коллектором и головкой блока цилиндров, поскольку обнаружить такой подсос визуально непросто.

Поиск подсоса в коллекторе

На бензиновых моторах лишний воздух может оказаться в коллекторе из-за разгерметизации воздуховодов, износа уплотнительных резинок топливных форсунок или повреждений шлангов, ведущих к вакуумному усилителю тормозов.

Для того чтобы найти подсос воздуха используют разные способы:

  1. Перекрытие подачи воздуха. Необходимо отсоединить патрубок от корпуса фильтра и завести мотор. После этого прикройте рукой патрубок – если подсоса нет, двигатель заглохнет. Если двигатель продолжает работать, и вы слышите шипение, подсос точно есть.
  2. Пережим шлангов. Необходимо запустить мотор и через определенное время постараться услышать шипение. Если обнаружить место повреждения герметичности не удалось, надо по очереди пережимать шланги, которые соединены с ресивером. Если вы пережали и отпустили шланг, и это повлияло на работу силового агрегата, ищите проблему в данной зоне.
  3. Сжатый воздух. Систему впуска неработающего двигателя необходимо обработать мыльным раствором, после чего перекрыть подачу воздуха от фильтра и закачать воздух через одну из трубок.
  4. Опрыскивание горючей смесью. Для поиска места подсоса воздуха в двигатель применяются такие средства как бензин, WD-40 или очиститель карбюратора. С помощью выбранного средства необходимо опрыскивать все стыки. Когда жидкость окажется в месте подсоса, вы заметите изменения в работе двигателя (обороты должны вырасти или упасть). Для опрыскивания лучше использовать медицинский шприц.

Применяя этот метод, проверьте такие места: патрубок между клапанной крышкой и регулятором холостого хода, патрубок между датчиком массового расхода воздуха и РХХ, соединение впускного коллектора и дроссельной заслонки, соединение коллектора и головки блока цилиндров, уплотнения форсунок, все шланги в зонах крепления хомутов.

  1. Дымогенератор. Далеко не у всех автомобилистов есть такое приспособление, в связи с чем обычно его используют в автомастерских. Вы можете купить готовое решение или изготовить его самостоятельно (инструкций и видео в Интернете хватает). Суть в том, что необходимо обеспечить подачу дыма через любой шланг во впускной коллектор. В проблемных местах дым будет просачиваться.

Поиск неисправности

Легко и наглядно определить подсос воздуха во впускном коллекторе можно дымогенератором.

Самым доступным способом поиска подсоса воздуха во впускном коллекторе является визуальный осмотр. Трещины и разрывы воздушных шлангов можно увидеть и «невооружённым» глазом. Также можно проверить, насколько плотно соединены между собой детали. Нередко случается, что во время ремонта, например, не затянули как следует гайки крепления карбюратора или других узлов. Если видимых причин неисправностей нет, то очень эффективным является распыление из баллончика составов типа «Быстрый старт», изготовленных на основе эфира, вдоль стыков деталей. Процедуру нужно проводить на работающем двигателе. Эфир, попавший через щели в коллектор, вызовет изменения в работе мотора – его обороты должны кратковременно увеличиться. Наконец, вопрос о том, как можно обнаружить подсос воздуха во впускном коллекторе, легко разрешить, если у вас есть дымогенератор. С его помощью поиск мест нарушений герметичности не представляет особых проблем. «Накачав» дымом впускной тракт, можно визуально наблюдать, где нарушена целостность впускной системы – при этом лучше воспользоваться лампой (фонариком) синего цвета – в её свете становится более заметным.

Почему не заводится машина

Почему не заводится двигатель
Данный материал ориентирован, главным образом, на автолюбителей, которые только знакомятся с автомобилем и имеют очень мало опыта его самостоятельного ремонта. Если же вы — настоящий эксперт и «волговед», все перечисленное в данном тексте вам знакомо и более того, вы знаете еще миллиард неисправностей и способов их устранения, не сдерживайте себя, поделитесь своими знаниями на страницах нашего форума и сайта, а эту страницу не читайте.
Итак, статья для новичков

Признаки:

1. Стартер крутит двигатель, но запуск не происходит. Машина не схватывает.
2. Стартер не крутит.
3. Стартер крутит, двигатель схватывает, но не заводится.
4. Двигатель заводится и глохнет.

В сущности, для карбюраторного двигателя существует лишь два препятствия для успешного запуска: нечему гореть или нечем поджечь… Конечно с автомобилями ГАЗ бывают и чисто мистические случаи, но их мы пока рассматривать не станем. То есть, нам нужно убедиться в том, что топливо подается и искра наличествует.
Топливо
Начните поиск неисправности с самых простых и банальных вещей. Проверьте наличие бензина в баке, на автомобилях ГАЗ 20, ГАЗ 21 и ГАЗ 24, для этого имеется специальная пробка с мерной линейкой в баке. Внимательно осмотрите топливопровод на предмет сильных протечек и соскочивших шлангов (поверьте, такое бывает с уже немолодыми автомобилями).
● Проверьте подачу топлива насосом. Для этого достаточно отсоединить магистраль от карбюратора и покачать рычаг ручной подкачки топлива на корпусе насоса. При исправном насосе, вы получите очень мощную струю, так, что заранее вставьте топливопровод в какую-либо емкость. Если струи нет, значит неисправен насос или забита магистраль. Отсоедините насос от приемной магистрали и попробуйте, будет ли он качать топливо из емкости. Неисправный насос нужно отремонтировать или заменить. Ремонт бензонасоса для автомобилей ГАЗ, мы рассмотрим в отдельном материале.

● Если бензонасос оказался исправным, но топливо из магистрали не подает, переходим к топливному баку. Бензобаки на легковых автомобилях ГАЗ, располагаются под кормой (кроме модификаций ГАЗ 3102 с баком за спинкой заднего дивана), Здесь нам нужно проверить состояние топливоприемника. За годы эксплуатации могла забиться его сетка или обломиться сама трубка заборника. Также в холодное время года, на дне бака образовывается лед, который может препятствовать забору топлива.
● Если с заборником топлива все в порядке, но оно не доходит до бензонасоса, вероятно проблему нужно искать в топливопроводе. Внимательно осмотрите его на предмет протечек и пережатостей. Если в магистрали имеются вставки из резиновых шлангов, проверьте, не разбухли ли шланги от времени и агрессивной среды. Также в трубке могла замерзнуть вода, попавшая в нее из бака. Разморозить магистраль вам поможет фен, но обращайтесь с ним очень аккуратно, как вы понимаете, бензин не любит беспечных.
● Вскройте фильтр тонкой очистки топлива. Штатно автомобили Волга, комплектовались разборным фильтром. Открутив его стаканчик вы обнаружите сетчатый или керамический фильтрующий элемент. Возможно, он забит или обмерз.
● Проверьте уровень топлива в поплавковой камере карбюратора. На карбюраторах типа К22, К124, К129 для этого имеется контрольное окошечко. На более современных карбюраторах вам придется снять верхнюю крышку.
● Проверьте, не залипает ли игла в поплавковой камере.
● Продуйте жиклеры.

Зажигание

Здесь так же нужно идти от простейшего.
● Начните с предохранителей.
● Далее, внимательно осмотрите высоковольтные провода. Проверьте, не выпал ли центральный провод трамблера из своего гнезда в катушке зажигания или крышке самого трамблера. Эта проблема характерна для ГАЗ 20 и ГАЗ 21 с винтовым зажимом провода в носике катушки.
● Простейшим пробником из лампочки на 12В и обрезка провода проверьте, приходит ли «+» на катушку зажигания при включенном зажигании.
● Если напряжения на входе катушки нет, проверьте контактную группу замка зажигания. Возможно она подгорела или вышла из строя механически.
● Проверьте, приходит ли «+» к самому замку зажигания.
● Выньте центральный провод из крышки трамблера и, держа его контакт на небольшом расстоянии от блока двигателя, проверните стартер. Есть ли искра? Если ее нет, виновата сама катушка зажигания. Ремонту она не поддается, замените.
● В случае, если у вас электронное зажигание, проверьте коммутатор, это проще всего сделать, заменив его на заведомо исправный (запасной имеет смысл возить в любом случае). Проверьте надежность контакта корпуса коммутатора на массу автомобиля.
● Проверьте состояние вариатора (добавочного или балластного сопротивления).
● Вывернув одну свечу, проверьте наличие искры, да и само состояние свечи, раз уж вы ее выкрутили.
● Проверьте состояние бегунка в трамблере. Очистите его верхний контакт от нагара, если таковой имеется. Осмотрите центральный контакт в крышке трамблера, так называемый «уголек». Он мог разрушиться или сноситься.
Двигатель вообще не крутится стартером.
● Первым делом проверьте состояние аккумулятора. Он может быть банально разряженным.
● Проверьте клеммы, почистите их и смазав солидолом, плотно наденьте, затянув крепеж с усилием, но без излишнего фанатизма.
● Проверьте состояние замка зажигания, появляется ли плюс на клемме СТ при положении ключа «СТАРТЕР».
● Возможно, у вас подгорел «пятак» втягивающего реле стартера. Попробуйте при включенном зажигании соединить гаечным ключом две шпильки на втягивающем. Если стартер закрутился. Вы нашли проблему.
● Проверьте состояние дополнительного реле стартера.
В большинстве случаев, одна из перечисленных манипуляций, вам непременно поможет. Ну а если ничего не помогло, значит, причина имеет мистические корни, и вам стоит задать вопрос на нашем форуме. Здесь есть шаманы, знающие очень мощные заклинания.

Важно:

P.S. Не забудьте осмотреть все секретные противоугонные хитрости, сделанные еще предыдущим владельцем машины, такие как: потаенные тумблеры в цепи зажигания, электромагнитные клапаны на бензомагистрали или выключатели массы.

Если бы процесс сжатия воздуха в цилиндре при такте сжатия продолжался бесконечно длительное время, а утечек воздуха из цилиндра не было бы, тогда величина степени сжатия равнялась бы компрессии. Говоря проще, в этом случае при сжатии воздуха в два раза мы получили бы компрессию две атмосферы. Сжав воздух в 20 раз, получили бы компрессию 20 атмосфер.

Однако ситуация совершенно другая. При сжатии воздуха выделяется дополнительная энергия, которая нагревает сжимаемый воздух, который, в свою очередь, расширяется и, соответственно, давит на стенки цилиндров с большей силой. Если бы процесс сжатия продолжался достаточно длительное время, то энергия, выделяющаяся в газе, успела бы поглотиться стенками цилиндров, блока и головки. Температура воздуха практически бы не изменилась и, соответственно, компрессия равнялась бы степени сжатия.

Как вы знаете, времени на процесс сжатия отводится крайне мало. За это время энергия, или назовем ее просто теплом, не успевает поглотиться стенками. Оно просто идет на расширение газа или, другими словами, на дополнительное увеличение давления того же воздуха.

Таким образом, при реальном сжатии газа, предположим, в 10 раз, давление там будет значительно выше.

Попытаемся разобраться, насколько компрессия больше степени сжатия.

Для большинства, прочитавших вышенаписанное, это что-то туманное и непереваримое. Попытаемся перевести это на русский язык.

Советский Союз выпустил немало славных грузовиков. Но среди них всех выделяется ГАЗ-53. Серийный выпуск 53-го ГАЗа начался в 1961 году, а закончился в 1993. На грузовых автомобилях ГАЗ 53 за все время существования этой модели устанавливались двигатели внутреннего сгорания (ДВС) Горьковского автомобильного завода и Заволжского моторного завода.

Пример классического грузовика ГАЗ 53

Из истории

С осени 1961 и по январь 1967 года горьковчане выпускали ГАЗ 53 с индексом «Ф», на ГАЗ 53Ф стоял шестицилиндровый двигатель ГАЗ 51. Хотя мотор был в то время несколько усовершенствован, но он обладал существенными недостатками.

ДВС уже морально устарел к тому времени. Нижнее расположение клапанов давало низкий КПД и небольшую мощность, мотор неудобен был в обслуживании и ремонте. Даже отрегулировать клапана являлось проблемой, и на их регулировку уходило немало времени. Чугунная конструкция имела немалый вес, мотор имел относительно небольшой ресурс по пробегу. Все шло к тому, чтобы заменить устаревшую конструкцию на что-то более приемлемое.

Пример двигателя для ГАЗ 53

В конце 1958 года не заволжском предприятии осваивают отливку алюминиевых сплавов, и завод начинает разрабатывать производство новых деталей из легкого металла.

В то время это был большой шаг вперед в автомобильной промышленности.

Сначала ЗМЗ спроектировал V-образный 8-цилиндровый двигатель для ГАЗ 13 «Чайка» (ЗМЗ 13). Двигатель обладал мощностью 195 лошадиных сил и работал на бензине с высоким октановым числом (Аи-93 или Аи-95). Почти сразу был разработан ДВС ЗМЗ 41 (140 л.с.). ЗМЗ 41 работал на «семьдесят шестом» бензине. Этот мотор устанавливался на «Волгах» спецслужб.

Так выглядит V образный 8-цилиндровый ДВС

Возможные неисправности СЗ: признаки и причины

Неисправности в СЗ отражаются на мощности силового агрегата, она снижается, и экономичном расходовании горючего.

Читать дальше: Chevrolet aveo t300 2011

Можно назвать следующие причины нестабильной работы СЗ на ГАЗ-53:

  1. Перегрев коммутатора или выход его из строя. Когда коммутатор перегревается, исчезает искра и двигатель не запускается. Завести двигатель становится возможным только после того, как он остынет и появится искра. Катушка также подвержена перегреву.
  2. Пробой в высоковольтных проводах. Это происходит, если провод держится недостаточно крепко в крышке трамблера: мотор будет работать нестабильно, с перебоями. Пробой проводов заметен в темноте — проскакивают искры голубого цвета.
  3. Прогорела крышка на прерывателе-распределителе. Обнаружить неисправность можно при визуальном осмотре. Возможно подгорание в месте, где установлен уголок с пружиной. Крышка должна быть без дефектов, не должна иметь выбоин, трещин.
  4. Могут подгореть контакты бегунка трамблера.
  5. Пробой свечей.

Если на вакуумном регуляторе трамблера диафрагма делает пропуски, то наблюдается падение мощности мотора. При этом если резко газовать, то силовой агрегат будет захлебывается и может перегреться. Трамблер выходит из строя редко, чаще всего причиной его поломки является износ по причине выработанного ресурса.

Новый двигатель для ГАЗ 53А

В 1964 году Заволжский моторный завод на базе двигателя ЗМЗ 41 разрабатывает новый двигатель, которым комплектовался ГАЗ 53. Следует отметить, что на второе поколение «газонов» (ГАЗ 53А) шестицилиндровые ДВС уже не устанавливались, и в дальнейшем на «пятьдесят третьих» шли только V-образные 8-цилиндровые моторы.

Новый ДВС получил индекс ЗМЗ 53А. Так же, как и ЗМЗ 13, мотор получил алюминиевый блок и две головки блока цилиндров (ГБЦ) из этого же металла. ЗМЗ 53А имел ряд явных преимуществ перед устаревшим шестицилиндровым ДВС:

  • Двигатель меньше весил;
  • Обладал большей мощностью и объемом цилиндров;
  • Реже выходил из строя;
  • Был более удобен в ремонте и обслуживании.

Характеристики ЗМЗ 53А

Начиная с 1966 года, на автомобилях ГАЗ 53А и ГАЗ 53 12 серийно устанавливался двигатель ЗМЗ 53. Он имел верхнее расположение клапанов, на модели применялся карбюратор К 126Б. Позднее карбюратор поставили другой (К 135)

В отличие от ЗМЗ 41, мотор 53-его имеет меньший объем цилиндров и ход поршня. Кто-то утверждает, что у этих ДВС детали взаимозаменяемы, но это абсолютно не так. У моторов даже разные блоки цилиндров, не говоря уж о поршневой группе, коленчатом вале и ГБЦ. В блоках разница в том, что посадочные места под гильзы цилиндров разного диаметра, поэтому замена одного блока на другой будет крайне проблематична.

Технические характеристики ЗМЗ 53А:

Из всего вышесказанного становится понятно, детали моторов не взаимозаменяемы. Можно только переставить силовой агрегат целиком.

Регулировка клапанов ГАЗ 53

Говоря о регулировке клапанов, имеют в виду регулировку зазоров клапанов ГАЗ-53 на холостом ходу. Она осуществляется между носиками коромысел и стержнями клапанов. Если у вас нет опыта и необходимых знаний, то за такой ремонт браться самостоятельно не рекомендуем. Однако же если вы уверены в своих силах, то воспользуйтесь регулировочным винтом и контргайкой.

0,25–0,30 мм (минимум 0,15–0,20 мм) — такой должен быть зазор между клапанами и коромыслами.

Важно помнить: один клапан должен свободно перемещаться, второй — не заходить в зазор.

Убедитесь, что клапаны всех 8 цилиндров закрыты. Установите коленвал в верхней мертвой точке такта сжатия в первом цилиндре. Ослабьте контргайку, щупом выставите нужный зазор. Подкручивайте винт неспешно, постепенно регулируя и проверяя размер зазора, не удаляя щуп. Сначала отрегулируйте один клапан, убедитесь, что все выполнено правильно. Далее продолжайте работать с клапанами в таком порядке: 5–4–2–6–3–7–8. Между цилиндрами прокручивайте коленвал на четверть оборота. Правильность можно оценить и интуитивно, опять-таки, если вы опытный владелец ГАЗ-53.

Горьковский автомобильный завод успешно работает с 1932 года, и за это время создал немало легковых авто и грузовиков, некоторые модели машин стали легендами российской автомобильной промышленности. Двигатели этих автомобилей еще двадцать назад не имели гидравлических компенсаторов в газораспределительном механизме, и регулировка клапанов ГАЗ выполнялась вручную.

Первые три десятилетия на Горьковском автозаводе разрабатывались собственные моторы, но на рубеже пятидесятых и шестидесятых годов прошлого столетия был построен завод по производству моторов в Заволжье, на котором до сих пор выпускаются двигатели и моторные детали для «газовских» машин. Чтобы двигатель ЗМЗ мог работать бесперебойно, он нуждается в техническом обслуживании, в том числе и в регулировке клапанов.

Основные неисправности двигателей ЗМЗ 53

Как и любой другой двигатель, ЗМЗ 53 имеет свои слабые места. От модификации здесь мало чего зависит, всем ДВС присущи схожие признаки.

  • недостаточное давление масла в системе смазки;
  • деформация впускного коллектора («паука»);
  • течь масла с заднего коренного подшипника;
  • повышенный расход масла;
  • при больших нагрузках происходят задиры шатунных шеек коленчатого вала.

Тем не менее, двигатели этой серии достаточно выносливы. Если учесть, какое порой моторное масло заливают в них, можно только удивляться терпимости ДВС. Не всякий двигатель иностранного производства выдержит такие издевательства над собой.

Часто от водителей «газончиков» слышишь, – «Все, мотор кончается». Так вот, «кончаться» он может чуть ли не годами. Без давления, с дымящей поршневой и большим расходом масла «газон» еще долго ездит. Очень часто и порой долго на «газоновских» моторах что-то подстукивает, а что именно, не выясняется даже после разборки агрегата. Удивительно, но факт.

Правильно ТО двигателя

Сам по себе двигатель хороший, и нареканий не вызывает, главное поддерживать его техническое состояние.

Так выглядит ДВС для автомобиля ГАЗ 53

При проведении технического обслуживания головку блока цилиндров необходимо подтягивать.

Но это первые три техосмотра, потом периодичность можно увеличить, и подтягивать головку блока через каждое ТО-2.

Не стоит забывать и про температурный режим.

Чтобы двигатель прослужил дольше, при первой же необходимости заменяйте поршневые кольца. О том, что пора заменять поршневые кольца, вам скажет сам автомобиль. В этом случае после каждых 100 км. пробега масло будет уменьшаться примерно на 400 грамм. Если же давления масла в системе упало, то тут дело во вкладышах коренных подшипников коленчатого вала, которые также необходимо сразу заменить.

Двигатель для ГАЗ 53 в разрезе

Технические черты ремонта

Пустотелый выпускной клапан ГАЗ 53 сделан из стали. В состав детали входит натрий металлический, обеспечивающий лучшее охлаждение. При этом нужно помнить, что в силу заводского брака его количество бывает недостаточным. В результате втулки клапанов ГАЗ 53 быстро изнашиваются.

Так выглядит втулки клапанов для Газ 53

Водители со стажем рекомендуют через каждые 550-600 км пути проводить профилактический осмотр «железного коня». Времени это много не отнимет, зато позволит диагностировать неисправность на ранней стадии.

Двигатель транспортного средства справедливо сравнивают с оркестром. Каждая деталь выполняют определенную функцию. От эффективности работы каждой зависят эксплуатационные характеристики машины в целом.

Схема и порядок затяжки шпилек головки цилиндров ГАЗ-53

По мере увеличения зазора между клапанами двигатель теряет способность в полной мере справляться со стоящими перед ним задачами. Снижаются обороты, ухудшается динамика разгона и появляется специфический шум в районе выхлопной трубы.

Если транспортное средство длительное время остается без квалифицированного технического обслуживания, то уже через несколько недель отдельные элементы двигателя начнут выходить из строя. Чем раньше автолюбитель заглянет под капот, тем дешевле ему обойдется ремонт.

Проверка технического состояния ДВС ЗМЗ 53

По некоторым показателям можно судить о техническом состоянии двигателя. Такими показателями являются:

  • расход масла на 100 (1000) км пробега;
  • значения величины давления масла на холостых и средних оборотах коленчатого вала;
  • компрессия в цилиндрах ДВС.

Расход масла проверяют по уровню контрольным щупом на холодном незаведенном двигателе. Если расход превышает 0,4 л на 100 км, двигатель нуждается в ремонте. Но ремонтируют ДВС и при меньшем потреблении масла, особенно тогда, когда на моторе нет никаких подтеков.

Давление масла контролируется стрелочным показателем и контрольной лампой на щитке приборов. Порой датчики бывают неисправными. Точные показания можно получить с помощью контрольного манометра. Минимальное давление на холостых оборотах ДВС не должно быть меньше 0,5 кг/см², на средних оборотах этот показатель не должен опускаться ниже 1 кг/ см². При меньших значениях двигатель отправляют в ремонт.

Компрессию в цилиндрах ДВС замеряют компрессометром. Такую операцию необходимо проводить вдвоем. Компрессия замеряется при вывернутых свечах, полностью открытой дроссельной заслонке, на хорошем аккумуляторе и отключенной подачей питания на высоковольтные провода. Хорошей компрессией на ЗМЗ 53 считается показатель 7,5 кг/ см².

Как измерить компрессию двигателя?

Для этого необходимо: • Прогреть двигатель, • Полностью зарядить АКБ, • Дроссель должен быть полностью открыт, • Воздушный фильтр снят, • Все свечи выкручены. Для проведения работ нам потребуется: • Компрессометр, • Свечной ключ.

В таком режиме полностью заряженная АКБ позволит стартеру раскрутить двигатель до 200 об/мин. Компрессия во всех цилиндрах должна быть ровной. При снижении уровня компрессии необходимо выяснить причину падения. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 гр. моторного масла. Процедуру замера повторяют. Если показания манометра выросли — причина падения в поршневых кольцах, если остались на прежнем уровне — в клапанах.

Технические характеристики двигателя

Ниже представлены технические характеристики двигателя ЗМЗ 511.1000398 для ГАЗ-53 ГАЗ-3307 и АИ-76

Двигатель карбюраторный, бензиновый, с V-образным расположением цилиндров под углом 90 градусов и верхним расположением клапанов.

В двигателе применены головки цилиндров с высокотурбулентными камерами сгорания и винтовыми впускными каналами. Во всех моторах применена система рециркуляции отработавших газов для снижения выброса вредных веществ в атмосферу. Двигатели имеют картер сцепления под унифицированную КПП.

Внешняя скоростная характеристика двигателя.

Соблюдая все требования, двигатель ГАЗ 53 прослужит вам и вашим детям.

Запчасти для грузовых автомобилей

Полный модельный ряд: ГАЗ-3307, 53, ГАЗ-3309, ГАЗ-66, 3308, 33081, 33086, ГАЗ-33104

Установка зажигания автомобилей ГАЗ-53, ГАЗ-3307

Система зажигания ГАЗ-53, ГАЗ-3307 — батарейная, бесконтактная транзисторная с напряжением в первичной цепи 12В, состоит из источников электрического тока, катушки зажигания, добавочного резистора, коммутатора, распределителя зажигания, свечей зажигания, наконечников свечей, выключателя зажигания и проводов низкого и высокого напряжения.

Рис.1. Схема системы зажигания ГАЗ-53, ГАЗ-3307

А — к стартеру; 1 — катушка зажигания; 2 — первичная обмотка; 3 — вторичная обмотка; 4 — аккумуляторная батарея; 5 — указатель тока; 6 — дополнительное реле стартера; 7 — добавочный резистор; 8 — выключатель зажигания и стартера; 9 — помехоподавительный резистор; 10 — свеча зажигания; 11 — распределитель-датчик; 12 — помехоподавительный резистор бегунка; 13 — обмотка распределителя; 14 — постоянный магнит; 15 — коммутатор; R1— резистор МЛТ-8,2кОм;R2 — резистор МЛТ-1, R3 — резистор МЛТ; R4 — резистор МЛТ-82 кОм; R5 — резистор МЛТ-62 Ом; R6 — резистор МЛТ-200 Ом; R7, R8 — резисторы МЛТ-47кОм;С2 — конденсатор К73-17-250В-0Д; СЗ — конденсатор К73-17-4008-1; С4, С5— конденсаторы К73-17-250В-0.047 мкФ; С6 — конденсатор К50-29-160В-10; С7 — конденсатор КЛ-2-И20-500В-1000; VI — диодыКДЮ2БилиКД4 521А; V2 — диоды КД209А или КД212А; V3 — транзистор КТ 848 А; V4, V5 — транзисторы КТ630Б или КТ653Б; V7 — диод 102Б

Надежная и экономичная работа двигателя зависит от бесперебойной работы системы зажигания ГАЗ-53. Для устранения радиопомех, вызываемых системой зажигания, провода высокого напряжения имеют распределенное сопротивление, а наконечники свечей— подавительные резисторы. Схема системы зажигания показана на рис.1.

Техническая характеристика системы зажигания автомобилей ГАЗ-53, ГАЗ-3307

Порядок зажигания ГАЗ-53 — 1 — 5 — 4 — 2—6 — 3 -7 — 8 Тип распределителя зажигания (трамблер) — 24.3706 Частота вращения валика распределителя в 1 мин с бесперебойным искра-образованием при работе с катушкой зажигания Б116 на трехэлектродный разрядник при искровом промежутке 7 мм, мин-1 — 20 — 2300 Направление вращения валика распределителя зажигания (трамблер) ГАЗ-53 — по часовой стрелке Катушка зажигания ГАЗ-53 — Б116 Свечи зажигания — А11 Величина искрового промежутка в свечах, мм — 0,8 — 0,95 Добавочный резистор — 14.3729 Коммутатор — 13.3734 или 13.3734-01 Наконечник свечи — 35.3707200 Сопротивление наконечника, кОм — 4 — 7

Катушка зажигания ГАЗ-53, ГАЗ-3307 (Б 116) служит для преобразования тока низкого напряжения в ток высокого напряжения.

Катушка зажигания ГАЗ-53, ГАЗ-3307 (Б 116) представляет собой трансформатор, на железном сердечнике которого намотаны вторичная, а сверху ее первичная обмотки. Сердечник с обмотками установлен в герметичном стальном корпусе, наполненном маслом и закрытом высоковольтной пластмассовой крышкой.

Сопротивление обмоток при температуре 15 — 35°С: первичной 0,43 Ом, вторичной 13 000 — 13 400 Ом.

Техническое обслуживание зажигания ГАЗ-53, ГАЗ-3307

Для предохранения от возможного пробоя пластмассовой крышки катушку необходимо очистить от грязи, пыли и масла, проверить надежность крепления проводов высокого и низкого напряжений.

При неработающем двигателе нельзя оставлять включенным зажигание во избежание перегрева катушки, приводящего к выходу ее из строя. Применение других типов катушек зажигания недопустимо.

Причинами неисправности катушки зажигания ГАЗ-53, ГАЗ-3307 могут быть: пробой изоляции; междувитковое замыкание; сколы и трещины пластмассовой крышки; прогар крышки, катушки зажигания из-за недосыла высоковольтного провода в гнездо.

В обмотках катушки зажигания дефекты чаще всего появляются из-за их перегрева и работе с увеличенными зазорами свечей. Перегрев происходит главным образом при включенном зажигании и незаведенном двигателе.

Прежде чем снять катушку зажигания ГАЗ-53, ГАЗ-3307 для замены, следует убедиться в исправности и надежности присоединения проводов к выводам катушки. Проверять катушку следует на специальном стенде совместно с транзисторным коммутатором, добавочным резистором и распределителем.

Исправная катушка зажигания ГАЗ-53 должна обеспечивать бесперебойное искрообразование на трехэлектродном игольчатом разряднике с искровым зазором в 7 мм от 20 до 2300 мин»1 валика-распределителя и окружающей температуре 25°С. Если катушка не удовлетворяет этим требованиям, ее следует заменить.

Распределитель зажигания (трамблер) ГАЗ-53, ГАЗ-3307

Трамблер автомобилей ГАЗ-53, ГАЗ-3307 (24.3706) (рис.2) представляет собой генератор, который вырабатывает импульсы напряжения для управления транзисторным коммутатором и для распределения импульсов тока высокого напряжения по свечам зажигания.

Трамблер ГАЗ-53, ГАЗ-3307 автоматически регулирует момент зажигания в зависимости от оборотов двигателя и от нагрузки. Автоматическая регулировка момента зажигания в зависимости от оборотов осуществляется центробежным регулятором, а от нагрузки — вакуумным автоматом.

Рис.2. Распределитель зажигания (трамблер) ГАЗ-53, ГАЗ-3307

1 — корпус; 2 — масленка; 3 — грузик центробежного автомата: 4 — пружина вакуумного автомата; 5 — регулировочная шайба; 6 — вакуумный автомат; 7 — диафрагма; 8 — магнитопровод ротора; 9 — постоянный магнит ротора; 10 — ротор; 11 — крышка; 12 — помехоподавигельный резистор; 13 — центральный вывод; 14 — центральный контакт-резистор; 15 — бегунок; 16 — фильц; 17 — полуэкран; 18 — винт; 19 — обмотка статора; 20 — статор; 21 — магнитопровод обмотки статора; 22—опора статора; 23 — шариковый подшипник; 24 — пружина центробежного автомата; 25 — упорный шариковый подшипник (на части датчиков устанавливается упорная шайба); 26 — втулка; 27 — валик; 28 — октан-корректор; 29 — упорная шайба; 30 — штифт; 31 — шип валика

В корпусе 1 в двух втулках 26 установлен валик 27. На верхней части вала смонтирован центробежный регулятор с ротором 10, на котором установлен магнит 9. На верхней части ротора установлен бегунок 15. В корпусе расположен статор 20, который крепится к опоре 22 с подшипником 23.

Устройство и детали системы питания двигателя ГАЗ-53

Система питания ГАЗ-53 (рис.1) состоит из топливного бака, топливопровода, фильтра отстойника, фильтра тонкой очистки топлива, топливного насоса, карбюратора, воздушного фильтра, впускной трубы и системы управления карбюратором.
Рис.1. Топливная система (система питания) ГАЗ-53
1, 18, 28 — топливопроводы;2 — топливный бак; 3 — штифт;4 — сетчатый фильтр;5 — прокладка; б — шайба алюминиевая; 7 — винт; 8 — трубка топливозаборная с фланцем; 9 — пружина; 10 — чашки фильтра; 11,14 — трубки; 12, 26—хомуты; 20, 13—шланги; 15 — карбюратор; 16 — фильтр тонкой очистки топлива; 17 — трубка; 19 — топливный насос; 21 — скоба; 22 — муфта трубки; 23 — гайка накидная; 24 — трубка; 25— винт хомута; 27 — гайка хомута
Топливный бак ГАЗ-53 штампованный из двух половин и свариваемый по фланцам, изготавливается из листовой освинцованной стали. Заправочная емкость топливного бака 90 л. Не вырабатываемый остаток топлива не превышает 0,5 л.
Сливные пробки топливных баков оборудованы устройством, позволяющим их пломбирование, для обеспечения сохранности топлива. На запорном устройстве пробок также имеются отверстия для установки пломб.
Топливный бак расположен под полом кабины и крепится к раме автомобиля посредством кронштейнов и хомутов с прокладками. На верхней половине бака имеются фланцы, на которые устанавливаются фланец с топливозаборной трубкой 22 и датчик указателя уровня топлива 4.

В нижней половине бака имеется сливное отверстие, которое закрывается пробкой 21 с конической резьбой.
Заливная горловина 1 топливного бака крепится к кабине посредством стремянки и накладки соединяется с патрубком бака резиновым формованным (маслобензостойким) шлангом 24.
Для обеспечения заправки бака топливом в заливную горловину впаяна воздуховыводная трубка, которая также соединяется с воздушной трубкой 19 резиновым шлангом 29. Соединения шлангов затягиваются хомутами.
Заливная горловина закрывается пробкой, которая крепится и поджимается к горловине посредством трех пластинчатых пружинных ланок. Соединение уплотняется резиновой (маслобензостойкой) прокладкой.
Для нормальной работы топливного бака пробка заливной горловины оборудована впускным (воздушным) и выпускным (паровым) клапанами. Выпускной клапан открывается под давлением 0,39 — 1,62 кПа, впускной — при разрежении в баке 0,44 — 3,53 кПа.
Топливопровод ГАЗ-53 состоит из линии всасывания и линии нагнетания. Топливопроводы 1и 28 (см. рис.1) от топливного бака 2 до бензонасоса 19 (линия всасывания), а также входящую в трубопровод 28 трубку 24, изготавливают из латунных трубок наружным диаметром 10 мм.
Топливопроводы 18, 17 и трубки 11, 14 (линия нагнетания) изготавливаются из латунных трубок наружным диаметром 8 мм. Тол щи н а стенок тру бок 0,8—1,0 мм.
Увеличение диаметра топливопровода на линии всасывания до 10 мм вызывается улучшением работы системы питания в условиях высоких (35 °С и более) температур окружающего воздуха.
Места подсоединений топливопроводов ГАЗ-53 к штуцерам фильтра-отстойника, бензонасоса, фильтра тонкой очистки топлива и карбюратора уплотняются посредством конических муфт 22 и накидных гаек 23.
Топливопроводы крепятся к раме автомобиля посредством скоб 21. В целях компенсации колебаний двигателя относительно рамы в месте подсоединения топливопровода к бензонасосу устанавливается маслобензостойкий резиновый с внутренней оплеткой шланг 20, соединение которого с латунными трубками уплотняется хомутами 26 с винтом 25 и гайкой 27.
Топливозаборная трубка имеет сетчатый фильтр 4 с латунной сеткой № 016 (1420 ячеек на 1 см2). Фланец топливозаборной трубки, а также датчика уровня топлива уплотняются резиновыми маслобензостойкими прокладками 5 и крепятся пятью(на каждый) винтами 7, под головки которых устанавливаются алюминиевые уплотняющие шайбы.
Топливный фильтр-отстойник ГАЗ-53 (рис.2). Фильтр-отстойник устанавливается на левом лонжероне автомобиля. Фильтр с пластинчатым фильтрующим элементом и штампованным стальным корпусом (стаканом отстойником).
Рис.2. Фильтр-отстойник ГАЗ-53
1 — прокладка крышки; 2—крышка; 3— стяжной болт с прокладкой; 4 — топливоподводящий штуцер; 5 — прокладка фильтрующего элемента;6 — фильтрующий элемент; 7 — стойки (две); 8 — корпус отстойника; 9 — пробка коническая ; 10 — выходной штуцер; 11 — пластина фильтрующего элемента; 12 — отверстия для прохода топлива; 13 — выступы на пластине; 14 — отверстия (два) для стоек; 15—пружина; 16 — шайба элемента; 17 — тарелка верхняя элемента
Крышка фильтра 2 изготавливается из чугуна. Корпус фильтра со стойкой в сборе посредством болта 3 подсоединяется к крышке 2. Между корпусом и крышкой устанавливается паронитовая прокладка 1.
Внутри корпуса фильтра-отстойника на стержне установлен фильтрующий элемент 6, состоящий из 170 кольцевых алюминиевых пластин 11 толщиной 0,15 мм.
Пластины собраны на двух стойках 7 и зажаты пружиной 15 между шайбой 16 и тарелкой 17. Одновременно пружина прижимает фильтрующий элемент 6 к крышке 2 фильтра. Между тарелкой и крышкой поставлена прокладка 5.
В пластинах 11 фильтрующих элементов имеются отверстия 12, которые у всех пластин совпадают и образуют таким образом ряд вертикальных каналов, а также два ряда штампованных выступов 13 высотой по 0,05 мм, благодаря которым между пластинами образуются зазоры, равные высоте выступов. Таким образом, фильтрующий элемент может задерживать частицы размером более 0,05 мм.
Бензонасос ГАЗ-53 (рис.3) типа Б9Д, диафрагменный, с механическим приводом от эксцентрика, укрепленного на кулачковом валу двигателя, крепится двумя болтами к крышке распределительных шестерен в передней правой части двигателя.
Между фланцем бензонасоса и привалочной площадкой крышки установлена паронитовая прокладка толщиной 0,6 мм.
В корпусе топливного насоса ГАЗ-53 (Б9Д) имеются: диафрагма 6 в сборе с верхней 7 и нижней 5 чашками, уплотняющимися к тяге 16 медной шайбой; уплотнитель 3 с располагаемым на нем стальным держателем и пружиной 15, рычаг привода насоса с осью, втулкой 20 и пружиной 18, рычаг ручного привода 1 с валиком 17 в сборе и возвратной пружиной.
Ось рычага 21 плавающего типа уплотняется в корпусе с двух сторон резьбовыми заглушками. Валик ручного привода уплотняется в корпусе кольцевым резиновым уплотнителем.
В головке 8 бензонасоса ГАЗ-53, имеющей всасывающую и нагнетательную полости, установлены, посредством запрессовки обоймы, два впускных 9 и один нагнетательный 14 клапаны.
Клапан состоит из обоймы, изготавливаемой из цинкового сплава, резинового клапана и латунной пластины, поджимаемых пружиной (из бронзовой проволоки) 3. Пластина клапана предназначена для исключения коробления клапана при отсутствии топлива в топливной системе.
Над впускными клапанами в головке 8 (см. рис.3) устанавливается сетчатый фильтр 10, изготовляемый из латунной сетки № 016, завальцованной в каркас.
Крышка головки 12 двумя винтами 11 крепится к головке 8. Между крышкой и головкой установлена бензостойкая резиновая уплотнительная прокладка 13.
Для исключения попадания на диафрагму из двигателя горячего масла и картерных газов на тяге 16 диафрагмы имеется резиновый маслобензостойкий уплотнитель 5. Сверху на уплотнителе устанавливается стальное кольцо (держатель), в которое упирается нижний конец пружины 15.
Под вильчатый конец рычага 19 на тяге 16 диафрагмы устанавливаются две упорные шайбы 2: нижняя стальная, а верхняя текстолитовая. Шайбы устанавливаются перед высадкой конца тяги.
Для контроля течи топлива при прорыве диафрагмы или нарушения ее уплотнения в месте крепления к тяге 16 в корпусе бензонасоса ГАЗ-53 имеется контрольное отверстие с установленным в нем сетчатым фильтром 4.
Рабочая поверхность рычага 19, изготавливаемого методом штамповки из стального листа, соприкасаемая с эксцентриком кулачкового вала двигателя, подвергается нитроцементации и закалке до твердости 45-58. После длительных стоянок для заполнения карбюратора топливом следует пользоваться устройством ручной подкачки.
Рис.3. Бензонасос ГАЗ-53
Фильтр тонкой очистки топлива (рис.4) крепится к кронштейну, устанавливаемому на двигателе перед карбюратором.
Рис.4. Фильтр тонкой очистки топлива ГАЗ-53
1 — корпус; 2 — прокладка; 3 — элемент фильтрующий; 4 — пружина; 5 — стакан-отстойник; 6 — коромысла; 7—гайка-барашек; 8 — держатель стакана; 9 — каркас фильтрующего элемента; 10 — сетка фильтрующего элемента; 11 — пружина поджимная сетки
Фильтрующий элемент разборной конструкции, включающий в себя: алюминиевый каркас элемента 9 с проточенными в его стенках кольцевыми канавками, внутри которых просверлены отверстия для прохода топлива, латунную фильтрующую сетку 10 (1400 ячеек на 1 см), которая в два слоя обернута вокруг каркаса, и пружину 11, прижимающую сетку к каркасу.
Корпус 1 фильтра ГАЗ-53 отливается литьем под давлением из цинкового сплава. Стакан-отстойник пластмассовый изготавливается из фенопласта. Фильтрующий элемент 3 поджимается к корпусу 1 пружиной 4, упирающейся в стакан-отстойник 5.
Между корпусом фильтра, стаканом-отстойником и фильтрующим элементом устанавливается объединенная формованная из маслобензостойкой резины прокладка 2.
На отдельных автомобилях устанавливался фильтр тонкой очистки топлива с керамическим фильтрующим элементом взамен сетчатого.
В отличие от сетчатого этот фильтр, кроме фильтрующего элемента, отличается применением двух отдельных прокладок между корпусом и стаканом-отстойником, а также корпусом и фильтрующим элементом, вместо одной (объединенной) у сетчатого фильтра.
Воздушный фильтр (рис.5) — инерционно-масляного типа предназначен для очистки воздуха, поступающего в двигатель.
Рис.5. Воздушный фильтр ГАЗ-53
1 — фильтрующий элемент с крышкой в сборе; 2 — винт крепления фильтра к карбюратору; 3 — прокладка (резиновая); 4 — шайба; 5 — карбюратор; 6 — воздухонаправляющий патрубок; 7 — прокладка; 8 — отверстие вывода картерных газов; 9 — прокладка; 10 — патрубок поддона отвода картерных газов; 11— корпус фильтра; 12 — набивка фильтрующего элемента
Воздушный фильтр ГАЗ-53 состоит из двух основных неразборных узлов: корпуса фильтра 11 со специально выштампованной масляной ванной и поддоном с патрубком для системы вентиляции, и фильтрующего элемента 1с крышкой в сборе.
В качестве набивки 12 фильтрующего элемента применяются интенсивно закрученные и термофиксированные капроновые нити диаметром 0,23 — 0,3 мм.
Активность масляной ванны заключается в том, что при повышении нагрузок двигателя скоростной воздушный поток захватывает и доносит масло из маслованны в набивку, которое, разбрызгиваясь по всему ее объему, активно участвует в очистке воздуха от пыли.
Фильтр крепится к карбюратору 5 винтом 2 и дополнительным кронштейном для исключения поломок карбюратора.
Впускная труба (рис.6). Труба одноярусная (с расположением впускных каналов в один ряд) отлита из алюминиевого сплава.
Кроме основного назначения — подвода горючей смеси от карбюратора к цилиндрам двигателя,— она служит одновременно крышкой полости толкателей, а также корпусом фильтра полнопоточной очистки масла.
Рис.6. Впускная труба ГАЗ-53
1, 34,— выпускные коллекторы; 2 — штуцер к водяному насосу, 3 — шланг; 4, 5, 6 — хомут стяжной шланга; 7 — штуцер перепускной; 8 — труба впускная; 9 — термостат; 10 — гайка; 11 — бобышка; 12 — кран-отопитель кабины; 13 — заглушка; 14 — прокладка; 15 — патрубок отводящий; 16, 17, 18 — детали крепления патрубка; 19 — шпильки крепления трубы; 20 — шайба; 21 — датчик указателя температуры охлаждающей жидкости и двигателе; 22, 23 — шпильки крепления впускной трубы; 24 —шпилька крепления грузовой гайки: 25 —шайба; 26 — грузовая спецгайка; 27, 29. 36 — прокладки впускной трубы; 28 — прокладка выпускных коллекторов; 30, 31, 32, 33 — шпильки с гайками и шайбами крепления выпускных коллекторов; 35 — кожух теплозащитный генератора
Впускные каналы трубы разделены на правый и левый ряды. Правый ряд питается от правой камеры карбюратора ГАЗ-53 и соединяет его с 1, 2,3 и 4-м цилиндрами двигателя; левый соединяет левую камеру карбюратора с 5,6, 7 и 8-м цилиндрами двигателя.
Для обеспечения более равномерного распределения разрежения в каналах левого и правого рядов в перемычке, разделяющей ряды, имеются три соединительных балансировочных отверстия: одно в зоне под карбюратором и два других в передней и задней ее части.
Для подогрева горючей смеси впускная труба имеет полость, сообщаемую с водяной рубашкой двигателя.

Охлаждающая жидкость через соединительные каналы поступает из головок двигателя, омывает впускные каналы трубы и через выходной патрубок, в котором устанавливается термостат, выходит в радиатор или при закрытом термостате в водяной насос.
На приливе трубы в зоне выхода охлаждающей жидкости в выходной патрубок имеется бобышка с коническим резьбовым отверстием, в которое ввертывается штуцер 7, соединяющий водяную полость трубы с водяным насосом ГАЗ-53 для обеспечения перепуска охлаждающей жидкости при закрытом клапане термостата.
Между трубой и головками, а также трубой и блоком двигателя расположены четыре резиновые прокладки: две боковые, передняя и задняя.
Карбюратор К-135
Карбюратор К-135 (рис.7) эмульсионный, двухкамерный с падающим потоком, с одновременным открытием дроссельных заслонок и балансированной поплавковой камерой.
Карбюратор К135 двигателя ГАЗ-53 от карбюратора К-126 отличается регулировочными параметрами. Установлен с одновременным введением на двигателе головок цилиндров с винтовыми впускными каналами.
Без изменения регулировочных параметров использование карбюратора К-135 на двигателях с обычными, ранее выпускавшимися головками цилиндров неприемлемо.
Рис.7. Схема карбюратора К-135 двигателя ГАЗ-53 и датчика ограничителя частоты вращения
1 — ускорительный насос; 2 — крышка поплавковой камеры; 3—воздушный жиклер главной системы; 4 — малый диффузор; 5 — топливный жиклер холостого хода; 6 — воздушная заслонка; 7 — распылитель ускорительного насоса; 8 — калиброванный распылитель экономайзера; 9—нагнетательный клапан; 10—воздушный жиклер холостого хода; 11— клапан подачи топлива; 12 — сетчатый фильтр; 13 — поплавок; 14 — клапан датчика; 15 — пружина; 16 — ротор датчика; 17 — регулировочный винт; 18 — смотровое окно; 19 — пробка; 20 — диафрагма; 21 — пружина ограничителя; 22 — ось дроссельных заслонок; 23 — вакуумный жиклер ограничителя; 24 — прокладка; 25 — воздушный жиклер ограничителя;26 — манжета; 27 — главный жиклер; 28 — эмульсионная трубка; 29 — дроссельная заслонка; 30 — регулировочный винт холостого хода; 31 — корпус смесительных камер; 32 — подшипники; 33 — рычаг привода дроссельных заслонок; 34 — обратный клапан ускорительного насоса; 35 — корпус поплавковой камеры; 36 — клапан экономайзера
От каждой камеры карбюратора горючая смесь подается независимо от другой через впускную трубу на свой ряд цилиндров: левая камера карбюратора (по ходу автомобиля) подает горючую смесь в 5, 6, 7 и 8 цилиндры, правая—в 1,2,3 и 4 цилиндры.
В крышке поплавковой камеры карбюратора К135 (ГАЗ-53) расположена воздушная заслонка 6 с двумя автоматическими клапанами.
Привод воздушной заслонки соединен с осью дроссельных заслонок системой рычагов и тяг, которые обеспечивают при пуске холодного двигателя открытие последних на угол, необходимый для поддержания пусковой частоты вращения коленчатого вала двигателя.
Эта система состоит из рычага 5 (рис8) привода воздушной заслонки, который одним плечом действует на рычаг оси воздушной заслонки 6 , а другим — на рычаге привода ускорительного насоса, соединенного с рычагом дроссельных заслонок тягой 2.
Рис.8. Регулировка карбюратора К-135 (ГАЗ-53) для угла открытия дроссельных заслонок при закрытой воздушной заслонке (пуск холодного двигателя)
1 — рычаг дроссельных заслонок; 2 — тяга; 3 — регулировочная планка; 4 — рычаг привода ускорительного насоса; 5—рычаг привода воздушной заслонки, 6 — ось воздушной заслонки
Основные системы карбюратора работают по принципу пневматического (воздушного) торможения бензина. Система экономайзера работает без торможения как элементарный карбюратор. Система холостого хода и главная дозирующая система имеются в каждой камере карбюратора.
Ускорительный насос и система пуска холодного двигателя — общие на обе камеры карбюратора. Экономайзер имеет общий на обе камеры клапан экономайзера и отдельные распылители, выведенные в каждую камеру.
Система холостого хода каждой камеры карбюратора К135 состоит из топливного жиклера 5 (см. рис.7), воздушного жиклера 10 и двух отверстий в смесительной камере: верхнего и нижнего. Нижнее отверстие снабжается винтом 30 для регулирования состава горючей смеси.
Винт холостого хода для исключения подсоса воздуха уплотняется резиновым кольцом. На головке винта имеется накатка для возможности установки ограничителя поворота винта с обеспечением постоянства отрегулированного качественного состава смеси. Эмульсирование бензина обеспечивается воздушным жиклером 10.
Главная дозирующая система состоит из большого и малого 4 диффузоров, эмульсионной трубки 28, главного топливного 27 и воздушного 3 жиклеров.
Система холостого хода и главная дозирующая система обеспечивают необходимый расход бензина на всех основных режимах работы двигателя.
В экономайзер карбюратора К135 входят детали как общие для обеих камер, так и отдельные для каждой камеры.

К первым относятся механизм привода и клапан 36 экономайзера с жиклером, а ко вторым — жиклеры, расположенные в блоке распылителей (по одному на каждую камеру).
Ускорительный насос 1 с механическим приводом состоит из поршня, механизма привода, обратного 34 и нагнетательного 9 клапанов и распылителей 7 в блоке.

Распылители выведены в каждую камеру карбюратора и объединены с жиклерами и распылителями экономайзера в отдельный блок.
Привод ускорительного насоса и экономайзера совместный. Он осуществляется от оси 22 дроссельных заслонок.
Система пуска холодного двигателя состоит из воздушной заслонки 6 с двумя автоматическими клапанами и системы рычагов, соединяющих воз-душную и дроссельную заслонки.
Работа карбюратора ГАЗ-53 при пуске холодного двигателя. При пуске холодного двигателя горючую смесь необходимо обогащать.

Это достигается прикрытием воздушной заслонки 6 (см. рис.7) карбюратора, что создает значительное разрежение у распылителей главных дозирующих систем в малых диффузорах и у выходных отверстий системы холостого хода в смесительной камере.
Под действием разрежения бензин из поплавковой камеры карбюратора К135 (ГАЗ-53) через главные топливные жиклеры 27 поступает к эмульсионной трубке 28 и жиклерам 5 холостого хода.
Через воздушные жиклеры 3 главной дозирующей системы и отверстия в эмульсионных трубках 28, а также через воздушные жиклеры 10 системы холостого хода в каналы поступает воздух, который, смешиваясь с бензином, образует эмульсию.
Эмульсия через распылители малых диффузоров 4 и выходные отверстия систем холостого хода поступает в смесительные камеры карбюратора и далее во впускную трубу двигателя.
Переобогащение горючей смеси после пуска двигателя при закрытой воздушной заслонке 6 предотвращается автоматическими воздушными клапанами карбюратора, которые, открываясь, впускают дополнительный воздух и обедняют смесь до нужных пределов.
Дальнейшее обеднение смеси достигается при открыванием воздушной заслонки 6 с места водителя. При полностью закрытой воздушной заслонке 6 дроссельные заслонки 29 автоматически приоткрываются на угол 12°.
Работа карбюратора ГАЗ-53 с малой частотой вращения коленчатого вала на режиме холостого хода двигателя.

При малой частоте вращения коленчатого вала двигателя на режиме холостого хода дроссельные заслонки 29 (см. рис.7) приоткрыты на угол 1-2°, а воздушная заслонка 6 открыта полностью.
Разрежение за дроссельными заслонками достигает при этом 61,5—64,1 кПа. Это разрежение через отверстия, прикрытые регулировочными винтами 30 системы холостого хода, по каналам передается к топливным жиклерам 5 системы холостого хода.
Под действием разрежения бензин из поплавковой камеры карбюратора К-135 (ГАЗ-53), пройдя главные жиклеры 27, через топливные жиклеры 5 системы холостого хода поступает в смесительную камеру, по пути смешиваясь с воздухом, поступающим через воздушные жиклеры 10 системы холостого хода.
На режиме малой частоты вращения коленчатого вала двигателя воздух поступает также через верхние переходные отверстия системы холостого хода.
Выходя из отверстий холостого хода, эмульсия дополнительно распыливается в смесительной камере воздухом, проходящим с большой скоростью через узкую щель, образованную стенкой смесительной камеры и дроссельными заслонками 29. Полученная таким образом горючая смесь поступает во впускную трубу двигателя.
На этом режиме разрежение у распылителей главной дозирующей системы в малых диффузорах 4 незначительно, поэтому главные дозирующие системы не работают.
Работа карбюратора на частичных нагрузках. При малых нагрузках необходимый состав смеси обеспечивается только системой холостого хода, а на частичных нагрузках — совместной работой главных дозирующих систем и системы холостого хода.
Работа карбюратора К-135 (ГАЗ-53) на полных нагрузках двигателя. Для получения максимальной мощности двигателя дроссельные заслонки 29 (см. рис.7) карбюратора необходимо открыть полностью.
За 5 — 7° до полного открытия дроссельных заслонок открывается клапан 36 экономайзера и дополнительное количество бензина, поступающего через систему, обогащает горючую смесь до пределов, обеспечивающих получение максимальной мощности. Система экономайзера работает по принципу элементарного карбюратора.
При работе бензин поступает из поплавковой камеры к жиклеру мощности, расположенному в корпусе клапана 36 экономайзера, и далее к отдельно расположенному блоку распылителей, имеющему жиклеры, помимо распылителя главной дозирующей системы.
Отдельный вывод экономайзера карбюратора позволяет обеспечить своевременное (примерно при 1500 мин-1 коленчатого вала двигателя при полном открытии дроссельных заслонок) вступление в работу этой системы, что необходимо для правильного протекания внешней скоростной характеристики двигателя.
Главная дозирующая система в это время также продолжает работать. Через систему холостого хода на режиме полных нагрузок двигателя поступает очень незначительное количество бензина.
При разгоне автомобиля работа карбюратора К-135 (ГАЗ-53) обеспечивается впрыском в воздушный поток дополнительной порции бензина.
Впрыск осуществляется ускорительным насосом через распылители 7 (см. рис.7). При резком открытии дроссельных заслонок 29 поршень ускорительного насоса 1 перемещается вниз.
Под давлением бензина обратный клапан 34 закрывается, а нагнетательный клапан открывается и дополнительное количество бензина через распылители 7 впрыскивается в воздушный поток.
При медленном открытии дроссельных заслонок карбюратора бензин успевает перетекать из подпоршневой полости в поплавковую камеру через зазор между поршнем и стенками цилиндра ускорительного насоса. Лишь незначительная часть бензина, открывая нагнетательный клапан 9, попадает в воздушный поток.
Клапан 9 и воздух, проходящий через отверстия для снятия разрежения с распылителя, предотвращают подсос бензина через систему ускорительного насоса во время работы двигателя с большой частотой вращения коленчатого вала двигателя на постоянном режиме. Остальные системы карбюратора работают при этом, как обычно.
Управление карбюратором ГАЗ-53 (рис.9) осуществляется педалью 8 с резиновой накладкой 1, кронштейн 5 которой закреплен на полу кабины, и системой тяги рычагов привода. Дополнительно имеются тяга 31 ручного управления дроссельными заслонками и тяга 16 ручного управления воздушной заслонки.
Рис.9. Управление карбюратором ГАЗ-53 на двигателе ГАЗ-53
1 — накладка педали; 2 —ось рычага педали; 3 — болт (два) крепления кронштейна педали;4 — втулки пластмассовые; 5 — кронштейн педали; 6 — прокладка; 7 — втулка резиновая тяги; 8 — педаль; 9, 10, 11 — тяги с шарнирными наконечниками; 12 — пружина; 13 — кронштейн оттяжной пружины; 14 — регулировочный винт; 15 — сухарь; 16 — тяга воздушной заслонки; 17 — винт; 18 — закладка уплотнителя, 19 — уплотнитель тяг; 20 — наконечник; 21 — шаровой палец; 22 — тяга компенсатора; 23 — гайка; 24 — пружина компенсатора; 25 — корпус компенсатора; 26 — рычаг тяги компенсатора; 27, 37 — болты; 28 — винт зажима тяги ; 29 — кронштейн зажима оболочки тяги ручного управления карбюратора; 30 — зажим оболочки; 31 — тяга ручного управления карбюратором; 32 — винт зажима тяги; 33 — палец; 34 — рычаг ручного управления карбюратором; 35 — в гулка валика; 36— крон-штейн валика привода; 38 — валик привода
Регулировка карбюратора ГАЗ-53 для минимально устойчивой частоты вращения на режиме холостого хода осуществляется путем резкого открытия дроссельной заслонки и сброса газа.
Двигатель при этом не должен глохнуть. Если двигатель глохнет, надо несколько увеличить частоту вращения, ввернув упорный винт, а затем снова проверить правильность регулировки.
Регулировку карбюратора К-135 для момента включения экономайзера производят при снятых крышке и прокладке поплавковой камеры.

Нажатием пальца планка 1 (рис.10) устанавливается так, чтобы расстояние между ней и плоскостью поплавковой камеры находилось в пределах 14,8 — 15,2 мм.
При этом регулировочной гайкой 2 штока устанавливают зазор между торцом гайки 2 и планкой 1 в пределах 2,8 — 3,2 мм. После регулировки гайку следует обжать.
Необходимо следить за тем, чтобы дроссельные и воздушная заслонки поворачивались совершенно свободно и без всяких заеданий плотно прикрывали свои каналы.

Допускаются зазоры между корпусами и заслонками не более 0,06 мм для дроссельных и 0,2 мм для воздушных заслонок. Допустимые зазоры проверяют щупами.
Для проверки работы ускорительного насоса замеряют его производительность, которая должна быть не менее 12 см3 на 10 полных ходов поршня. Темп качения должен быть при этом 20 полных качений/мин. Ускорительный насос должен работать плавно, без заеданий.
При этом обращают внимание на чувствительность ускорительного насоса. Это значит, что подача топлива через распылитель ускорительного насоса должна начинаться одновременно с началом хода дроссельных заслонок.
Допустимое запаздывание не более 5°. При большем запаздывании следует подобрать новый поршень к колодцу ускорительного насоса или заменить резиновую манжету поршня ввиду их износа.
Если производительность насоса меньше заданной величины, то это значит, что не плотны клапаны (обратный или нагнетательный) или засорился распылитель. Это повреждение ликвидируется промывкой и продувкой распылителя и седел клапанов, а также их протиркой (при необходимости).
Рис.10. Регулировка карбюратора ГАЗ-53 для момента включения клапана экономайзера
При регулировке карбюратора на необходимый угол открытия дроссельных заслонок при полностью закрытой воздушной заслонке, поступают следующим образом (см. рис.8).
Ослабив крепление передвижной планки 3, размещенной на рычаге 4 привода ускорительного насоса, полностью закрывают рычагом 5 воздушную заслонку карбюратора.
Далее приоткрывают рычагом 1 дроссельные заслонки так, чтобы зазор между стенкой смесительной камеры и кромкой заслонки был 1,2 мм (этому зазору соответствует угол открытия заслонок, равный 12°), и перемещают передвижную планку 3 до тех пор, пока она не упрется в выступ рычага, после чего закрепляют ее.
Открыв и снова закрыв воздушную заслонку, проверяют правильность регулировки карбюратора путем замера указанного выше зазора.

Малая частота вращения коленчатого вала на режиме холостого хода двигателя в карбюраторе регулируется с помощью двух винтов 2 качества смеси (по одному на каждую камеру) и одного упорного винта 1 дроссельных заслонок (винт количества смеси).
Причем при завертывании каждого винта 2 смесь обедняется, а в случае отвертывания обогащается. Регулировочный винт количества смеси регулирует минимальное открытие дроссельной заслонки, при котором двигатель устойчиво работает без нагрузки.

  • Техобслуживание сцепления ГАЗ-3307
  • Система рулевого управления ГАЗ-3307
  • Детали КПП автомобиля ГАЗ-3307
  • Обслуживание заднего моста ГАЗ-3307
  • Обслуживание топливной системы дизельного двигателя Д-245
  • Сцепление ГАЗ-3309 с дизельным двигателем
  • Операции по разборке коробки передач ГАЗ-3309
  • Сервис переднего моста ГАЗ-3309
  • Ремонт карданных валов автомобилей ГАЗ-3309
  • Операции по сборке базовых компонентов двигателя ЗИЛ-130
  • Операции по сервису и ремонту КПП ЗИЛ-130
  • Техобслуживание и ремонт сцепления ЗИЛ-130
  • Ремонт и регулировки заднего моста ЗИЛ-130
  • КАМАЗ-4310, 43118, 43114
  • КАМАЗ-5320, 55111, 53212, 5511, 55102
  • КАМАЗ-65115, 6520, 65117
  • КАМАЗ-4308
  • Двигатель КАМАЗ-740
  • Детали блока цилиндров и головки двигателя ЯМЗ-236
  • Сервисное обслуживание поршневой группы и коленвала ЯМЗ-236
  • Диагностика и технические регулировки двигателя ЯМЗ-236
  • Устройство и регулировки ТНВД и форсунок двигателя ЯМЗ-236
  • Блок цилиндров и поршневая ЯМЗ-238
  • Компоненты системы питания топливом дизеля ЯМЗ-238
  • Устройство и регулировки ТНВД дизеля ЯМЗ-238
  • Техническая конструкция коробки передач ЯМЗ-239
  • Компоненты переднего моста и рулевые тяги автомобиля Маз-5516, 5440
  • Система рулевого управления автомобилей Маз-5516, 5440
  • Детали сцепления и коробки передач Маз-5516, 5440
  • Техническое обслуживание ведущих мостов автомобилей Маз-5516, 5440
  • Гидроусилитель рулевого управления автомобилей Маз-5551, 5335
  • Обслуживание карданной передачи автомобилей Маз-5551, 5335
  • Техбслуживание и регулировка сцепления Маз-5551, 5335
  • Ремонт и сервис заднего моста автомобилей Маз-5551, 5335
  • Коробка переключения передач Урал-4320
  • Устройство и регулировки мостов Урал-4320
  • Обслуживание раздаточной коробки Урал-4320
  • Компоненты рулевого управления Урал-4320
  • Обслуживание коробки передач КРАЗ-255, 260
  • Рулевой механизм и ГУР Краз-255, 260
  • Регулировки и ремонт цилиндра ГУР и рулевых тяг автомобиля Краз
  • Компоненты ведущего моста и карданные валы Краз-255, 260